Genomic Signatures and Clinicopathological Correlation in Uterine Smooth Muscle Tumors of Uncertain Malignant Potential, Leiomyosarcoma, and Leiomyoma with Bizarre Nuclei

Ying Liu¹, Jong T Kim², Fabiola Medeiros², Bonnie L Balzer² Eric Vail², Jianbo Song², Kevin Baden², Gaurav Khullar², David M Engman², Jean R Lopategui² ¹Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA 958171 ²Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048

Background: Differentiating uterine smooth muscle tumors of uncertain malignant potential (STUMP), atypical leiomyoma (LEIO), and leiomyosarcoma (LMS) is challenging. In addition, prognostic genomic biomarkers are not available for these entities. Using copy number variation (CNV) chromosomal microarrays (CMA), we investigated the genomic landscape of these tumors. Our goal was to identify genetic alterations in oncogenes and tumor suppressor genes and evaluate how these genomic signatures may correlate clinicopathologically in patients with STUMP, LEIO, and LMS.

Design: We retrospectively reviewed the pathology and follow up on 20 patients, including 10 STUMP, 5 LMS, and 5 LEIO, and correlated with CMA result. For each patient sample, the results were filtered to only include 720 genes from the COSMIC 2 tier cancer gene census, causally implicated in cancer. The cases were grouped by tumor type (LMS, STUMP, LEIO) and subsequently the net frequency of gene gains and losses within each group was calculated. These lists were then filtered to include genes that were lost or gained only in LMS, only in STUMP, and only in LEIO.

Results: The average age at diagnosis was 66 years for LMS, 50 years for LEIO and 44.9 years for STUMP. The average size of the dominant tumor for LMS was 8.5 cm, 7.3 cm for LEIO and 5.8 cm for STUMP. TSG loss was the predominant CNV in all 19q13.2 STUMP. Four of 10 STUMP had a unique 1p loss. Xq28 Similarly, in LMS, TSG loss was the predominant CNV (CBFB, CTCF, FAT1, KLF6, LARP4B and LRP1B). TP53 loss and gain of oncogenes were only observed in LMS. One case with high nuclear grade, increased mitotic count, and coagulative necrosis had a hybrid genomic fingerprint with loss of 1p only seen in STUMP and loss of TSG CBFB and CTCF also seen in LMS. 17 patients had follow-up ranging from 2 months to 108 months with an average of 37.6 months. Four of 5 LMS patients presented with distant metastases including one who died of the disease. No metastases or death was reported among the STUMP and LEIO patients.

Fig 1. General Parameters of LMS, STUMP and LEIO

-		07110.00	1510	
Parameters	LMS	STUMP	LEIO	
Total No. of Cases	5	10	5	
Age, Mean (yr)	66	44.9	50	
Tumor Size, Largest (cm)	8.5	5.8	7.3	
Followup, Mean (Range) (mo)	20.6 (13-29)	46.1 (0~108)	40.3 (0-60)	
Metastasis	4	0	0	
Dead With Disease	1	0	0*	
* one case dead with colonic adenocarcinoma				

Fig 2. LMS Specific CNV Frequencies

	Only lost in	Freq lost (out	<u>t</u>	Only Gained in	Freq gained	
Location	<u>Leiomyosarcoma</u>	of 5 cases)	Function	<u>Leiomyosarcoma</u>	(out of 5 cases)	Function
17p13	TP53	5	TSG	SSX2	2	OG
10p11.2	ABI1	3	oncogene, fusion	SSX4	2	OG
16q22	CBFB	3	TSG, fusion	ARAF	1	OG
16q22.1	CTCF	3	TSG	BIRC3	1	OG
4q35.2	FAT1	3	TSG	TFE3	1	OG
10p15	GATA3	3	oncogene, TSG	CRLF2	1	OG
10p15	KLF6	3	TSG	TNFRSF17	1	OG
10p15.3	LARP4B	3	TSG	EIF1AX	1	
13q14.1	LCP1	3		ERG	1	OG
2q21.2	LRP1B	3	TSG	FAM47C	1	
	ACBR1	<=2		FLCN	1	TSG
19q13.2	AKT2	<=2	OG	GATA1	1	OG
Xq28	ATP2B3	<=2	TSG	GRIN2A	1	TSG
Xq22.1	ВТК	<=2	OG, TSG	KDM5C	1	TSG
4q35.1	CASP3	<=2	TSG	KDM6A	1	OG
16q24.3	CBFA2T3	<=2	TSG, fusion	OLIG2	1	OG

UCDAVIS

Department of Pathology and Laboratory Medicine

Fig	3.	S 7
-----	----	------------

<u>Location</u>	<u>Only lost in</u> <u>STUMP</u>	Freq (out of 10 cases)	Function	Only Gained in STUMP
1p36.13	ARHGEF10L	4	TSG	CDH11
1p36.11	ARID1A	4	TSG, fusion	
1p13.1	ATP1A1	4	oncogene, TSG	
1p36.21	CASP9	4	TSG	
1p12	FAM46Cx	4	TSG	
1p36.12	ID3	4	TSG	
1p36.11	MDS2	4		
1p36.22	MTOR	4	oncogene	
1p12	NOTCH2	4	oncogene, TSG	
1p13.2	NRAS	4	oncogene	
1p36.21	PRDM2	4	TSG	
1p13.3	RBM15	4		
1p22.1	RPL5	4	TSG	
1p36.13	SDHB	4	TSG	
1p36	SPEN	4	TSG	
1p13	TRIM33	4	TSG, fusion	
5q31	ARHGAP26	3	TSG, fusion	
15q21.1	B2M	3	TSG	
1p22	BCL10	3	TSG, fusion	
13q31.3	GPC5	3	TSG	
1p35	LCK	3	oncogene, fusion	
1p36.2	PAX7	3	fusion	

Conclusions:

and gain of oncogenes. loss of TSG. smooth muscle tumors.

References:

•Croce S., Ducoulombier A., Ribeiro A. et al. Genome profiling is an efficient tool to avoid the STUMP classification of uterine smooth muscle lesions: a comprehensive array-genomic hybridization analysis of 77 tumors. Mod. Pathol. 2018 May;31(5):816–828. •Zhang, Q., Ubago, J., Li, L. et al. Molecular analyses of 6 different types of uterine smooth muscle tumors: Emphasis in atypical leiomyoma. Cancer. 2014 July;120: 3165-3177.

TUMP Specific CNV Frequencies

•The results of this pilot study suggest that LMS display a unique loss of TP53, loss of other TSG,

•STUMP is associated with a unique loss of 1p and

 High grade STUMP displays loss of CBFB and CTCF observed in LMS, in addition to 1p loss typically associated with STUMP.

 Additional studies with a larger cohort and longer clinical follow-up are needed to further ascertain genomic markers of biologic behavior in uterine