Cost-Effectiveness of Wheat Flour Fortification with Micronutrients for Reducing Neural Tube Defects and Maternal Anemia in Yaoundé and Douala, Cameroon

Brenda Wu1, Arram Noshirvan1, Hanqi Luo2, Justin Kagin2, Steve Vosti3, Reina Engle-Stone2

1University of California Davis, School of Medicine, 2University of California Davis, Department of Nutrition, 3University of California Davis, Agricultural and Resource Economics

Background

- 59% of women of reproductive age (WRA) in Cameroon had inadequate folic acid intake in 2009.
- Folate deficiency increases the risk of neural tube defects (NTD), specifically spina bifida and anencephaly.
- The prevalence of NTD in Cameroon from 1997-2006 was four times that of the US at 1.99/1000 cases per year.
- 18% of WRA in Cameroon had iron deficiency anemia (IDA).
- Mandatory wheat flour fortification with micronutrients – including iron and folic acid – was implemented in Cameroon in 2011.
- Food fortification programs are considered cost-effective; most cost-effectiveness estimates rely either on cost-per-individual reached or biological impact.

Objective

Estimate the cost-effectiveness of wheat flour fortification with iron and folic acid for reducing cases of NTD and maternal anemia in Cameroon.

Methods

- Program costs, pre/post intervention numbers of NTD cases, and prevalence of IDA among WRA were estimated and projected over a 13-year period from 2009-2021.
- IDA prevalence was measured using pre/post intervention micronutrient surveys and projected forward.
- Post-fortification NTD cases were estimated using proposed risk and benefit model.
- Post-fortification effects on IDA were observed in 2012 and the same magnitude of effect is assumed to have been sustained thereafter.

Methods, cont.

Effects of Fortification Program:

- 13-year fortification program costs (USD)
 - Pre-fortification rate of NTD = 1.99/1000 live births
 - Projected number of NTD cases averted over 13 years
 - Pre-fortification prevalence of IDA
 - Post-fortification prevalence of IDA

<table>
<thead>
<tr>
<th>Year</th>
<th>NTD prevalence</th>
<th>Fortification survey</th>
<th>Post-fortification survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997-2006</td>
<td>1.99/1000</td>
<td>2009 Pre-fortification micronutrient survey</td>
<td>2011 Implementation of flour fortification program</td>
</tr>
<tr>
<td>2009-2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Post-fortification micronutrient survey</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1997-2006 NTD prevalence = 1.99/1000

Recurring and annual program costs:
- Annual costs: Iron/zinc/B12 premix
- Every 3 and 5 years: Monitoring and evaluation

Summary Results of 13-Year Program

<table>
<thead>
<tr>
<th>Cases averted</th>
<th>Estimated cost per case averted (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTD</td>
<td>554</td>
</tr>
<tr>
<td>Iron Deficiency Anemia in WRA</td>
<td>688,368</td>
</tr>
<tr>
<td></td>
<td>3.54/case iron deficiency anemia averted amongst WRA</td>
</tr>
</tbody>
</table>

Conclusions

- Similar analyses estimate the cost/case NTD averted to be $1,200 in Chile ($11,000/infant death averted) using observed changes; and cost/case IDA averted to be $1.33 using projected changes.
- Hence, local circumstances (prevalence rates, program effectiveness, etc.) can greatly influence program efficiency.
- The cost of preventing NTD and IDA this way are likely to outweigh social and economic costs of these conditions.
- Calculating quality- and disability-adjusted life years (QALY and DALY) offers an alternative interpretation of fortification cost-effectiveness on reducing disease burden.
- A post-fortification study of NTD prevalence in Cameroon needs to be performed to assess the accuracy of our results.

Discussion

Contact Information

Brenda Wu, MD Candidate; bwu@ucdavis.edu
Arram Noshirvan, MD Candidate; anoshirvan@ucdavis.edu

References