To understand the epidemiology and presentation of acromegalic cardiomyopathy with symptoms of diastolic heart failure with restrictive physiology

On admission: BP 193/111, HR of 63, RR 24, saturating 97% on NC

Elevated GH and IGF

Treat HF with preserved EF: control volume status, BP, pulse

To appreciate the interactions between growth hormone (GH) and insulin

An ECG (Figure 2) and CXR (Figure 3) performed: ECG demonstrated atrial

Patient was felt to be in decompensated heart failure with preserved EF

Patient was sent for to evaluate the hemodynamic status as diuresis had not been as

GH impacts structure and function of the normal adult heart by stimulating cardiac growth

After implementation of traditional HF therapy, coronary angiogram was

Transsphenoidal surgery is far better for microadenomas than macroadenomas, which

Patients often experience increased # of valvular abnormalities and arrhythmias, such as:

Treat acromegaly, with hopes of cardiac benefit: somatostatin analog

Two years post procedure with close follow up by heart failure team, neurosurgery,

Patients with acromegaly have a 30% higher mortality rate with 60% of deaths due

"Surprisingly, our patient continued to have frequent decompensations of heart

Cardiovascular complications, including cardiomyopathy and arterial hypertension, should

Learning Objectives

• To understand the epidemiology and presentation of acromegalic cardiomyopathy with symptoms of diastolic heart failure with restrictive physiology

• To appreciate the interactions between growth hormone (GH) and insulin-like growth factor I (IGF-1) for the maintenance of normal cardiac function

• To elaborate on the status of GH/IGF-1 in relation to heart failure and the potential use of GH antagonists as a tool in the adjunctive treatment of heart failure

Case Presentation

• A 55-year-old African American man with a hx of HTN presented to the ED with chronic, acutely worsening dyspnea, chest pain, and fatigue.

• On admission: BP 193/111, HR of 63, RR 24, saturating 97% on NC

• On admission, in significant cardiopulmonary distress, speaking 3-word sentences. JVD present, diffuse crackles bilaterally. PMI laterally displaced and diffusely palpable in the 5th intercostal space. Rhythm was irregularly irregular heart without murmurs, ruts, or gallops. 3+ pitting edema below the knees bilaterally. Strength and sensation intact. Exam notable for macroglossia, and extremely large hands and feet.

• An ECG (Figure 2) and CXR (Figure 3) performed: ECG demonstrated atrial fibrillation, a rate of 61/min, intra-ventricular conduction block; and right axis deviation; no pathologic Q waves seen. CXR showed massive cardiomegaly with pulmonary vascular congestion and right lower lobe consolidation

• Patient was sent for to evaluate the hemodynamic status as diuretics had not been as brisk as previously. Figure 4 provides initial laboratory data

• Thorough physical exam demonstrated massively enlarged feet, macroglossia. In addition, CT scan showed massively enlarged cardiac chambers, leading to a focused differential diagnosis: acromegaly, chronic atrial fibrillation, valvular disease, cardiomyopathy (Figure 5)

• Echocardiogram showed LVEF = 60%, severe concentric left ventricular hypertrophy, massive left and right atrial enlargement at 11.6 x 15.9 cm (444.7ml/m2) and 11.5 x 5.54 cm, respectively (Figure 6, 7, 8)

• Patient was felt to be in decompensated heart failure with preserved EF

• After implementation of traditional HF therapy, coronary angiogram was performed, revealing non-flow limiting coronary artery disease

• Additional history obtained: recently incarcerated, was receiving “weekly injections for therapy”. He had grown four inches taller (now 6’ 8’’) and increased in height from a shoe size of 16 to 20. Was the star power forward for his college basketball team!

• Elevated GH and IGF-1 levels at 11.5ng/mL and 700ng/ml respectively (normal 81-225). No GH suppression after 75-g oral glucose tolerance test. Pituitary MRI demonstrated mild asymmetric prominence on left side of the pituitary gland, revealing microadenoma.

• With signs and symptoms of heart failure in a setting of preserved EF with a diagnosis of acromegaly, options included:
 - Treat HF with preserved EF; control volume status, BP, pulse
 - Treat acromegaly, with hopes of cardiac benefit: somatostatin analog
 - Treat heart failure and acromegaly concurrently

• We implemented dual therapy: diuretics, anti-hypertensives, pulse control, low salt diet, somatostatin analogs, and regular follow-up

• Surprisingly, our patient continued to have frequent decompensations of heart failure.

• Endonasal endoscopic transsphenoidal surgery to resect the pituitary microadenoma was performed; repeat echo showing improvement of LV hypertrophy

• Two years post procedure with close follow up by heart failure team, neurosurgery, and endocrinology, patient has had no further admissions for decompensated heart failure, has a normal GH level

• Patients with acromegaly have a 30% higher mortality rate with 60% of deaths due to cardiovascular complications – hence immediate diagnosis and management required for better control of acromegaly

• Acromegaly is a rare disease with an annual incidence of 4 cases/mil and a prevalence of 40 cases/mil, characterized by increased GH and IGF-1 levels

• “Acromegalic cardiomyopathy” is characterized by eccentric hypertrophic hypertrophy, diastolic dysfunction, progressive systolic impairment, and eventual heart; our star basketball power forward lost his ability to pump forward due to diastolic dysfunction

• Patients often experience increased # of valvular abnormalities and arrhythmias, such as:
 - ectopic beats, paroxysmal atrial fibrillation, paroxysmal supraventricular tachycardia, BBB
 - GH impacts structure and function of the normal adult heart by stimulating cardiac growth and contractility and regulating vascular tone and peripheral resistance.
 - Cardiovascular complications, including cardiomyopathy and arterial hypertension, should be evaluated and followed serially.

• Transsphenoidal surgery is far better for microadenomas than macroadenomas, which unfortunately represent the vast majority, >70%; all GH-secreting pituitary adenomas; hence, medical therapy is vital and is based on GH-lowering medications.