A Novel Therapeutic Approach for HD: Specific Gene Editing Strategies

Northern California HDSA
2016 Chapter Convention

Kyle Fink, PhD
JHD and NeuroGenetics Team
Stem Cell Program
Institute for Regenerative Cures
University of California, Davis Medical Center
Overview

• Experimental Treatment options for Juvenile Huntington’s disease
 – Potential Targets for gene therapy
• Transcription Activator-like Effectors
 – Application to JHD
• Preliminary Findings
 – *Publication in Cell Transplantation*
• Future Directions
HTT gene → htt protein

Normal number: < 31 CAG
“Gray area”: 32-38 CAG
Huntington disease: > 38 CAG

Treatment Options

• Neuroprotection
 – Self regrowth of lost neurons

• Cell Replacement
 – Transplantation of cells that will grow into neurons

• Gene Modification/Correction
 – Silence the mutant gene
Neuroprotection

Ross et al, 2014
Cell Replacement

Ross et al, 2014
Gene Modification/Correction

Ross et al, 2014
Targets for Reducing mHtt

- Degrading the toxic protein and getting rid of it from the cell
- Disrupt mRNA so that it never gets translated into the toxic protein
- Silencing the mutant allele to prevent transcription of any mHtt mRNA or protein
Gene Therapy

• Traditionally thought of as the addition of a gene that is lacking in a specific disease.
 – Delivered via viral vectors

• Genetically reprogramming cells to a different fate for transplantation
 – Creation of pluripotent cells (iPSC) or induced neurons

• Correction or deletion of a gene
 – New technology Zinc Finger, Transcription Activator-like Effector, CRISPR/Cas9
Gene Therapy

AAV releases gene into cell

Target cell

Receptor protein

Patient

Cell therapy?

Advanced liver toxicity tests

Nature Reviews | Molecular Cell Biology
Transcription activator-like effectors

- TALE or TALEN (when paired with a nuclease)
- Derived from plant pathogenic bacteria from the genus Xanthomonas
- One of many DNA-targeting proteins
- Each repeat comprises 33-35 amino acids.
- Can be rapidly synthesized to target any base pair sequence
- Highly efficient and specific with minimal off-target effects
- Can be constructed with a variety of transcription factors (i.e., nucleases, activators, repressors)
Transcription activator-like effectors

A TALEN (FokI HETERODIMER) - Double-strand break and deletion

B TALE TRANSCRIPTIONAL ACTIVATOR - Turn on or enhance gene expression

C TALE TRANSCRIPTIONAL REPRESSOR - Block gene expression
How can we apply this to HD?

- We can Target unique sites in the mutant allele to silence only the mutant allele using gene repression.

Ross et al, 2014
Transfection Efficiency

<table>
<thead>
<tr>
<th></th>
<th>GFP/SNP</th>
<th>GFP/Ubi</th>
<th>UBI/SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pgk-Empty</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T7</td>
<td>-0.968</td>
<td>-0.652</td>
<td>0.441</td>
</tr>
<tr>
<td>T2</td>
<td>-0.855</td>
<td>-0.549</td>
<td>0.035</td>
</tr>
<tr>
<td>T3y</td>
<td>-0.951</td>
<td>-0.964</td>
<td>0.999</td>
</tr>
<tr>
<td>CAG-F CAG-R</td>
<td>-0.993</td>
<td>-0.999</td>
<td>0.996</td>
</tr>
</tbody>
</table>

Fink et al, Cell Transplantation, 2016
HD Fibro Panel

GM02151

GM02167

GM04781

GM04787

GM02123: Negative Control without T3y SNP
In vivo injection using TurboFect
Delivery Options for Gene Therapy

- Delivery of Recombinant Protein
 - Immune response, limited biodistribution

- Delivery via-direct *in vivo* transfection
 - TurboFect (DNA) – limited biodistribution, but observable knockdown
 - Invivofectamine (RNA)– Biodistribution? and possible immune response

- Delivery via viral vectors (AAV) – Fredric Manfredsson MSU
 Biodistribution in the degenerative brain
 - Immune response with repeated administration?

- Use of synthetic nanoparticles – Precision NanoSystems
 - Unknown biodistribution, immune response and uptake into neurons

- Use of Dendrimer – Julien Rossignol and Ajit Sharma
 - Unknown cellular uptake, biodistribution, and immunology

- Use of Mesenchymal Stem Cells as a delivery platform
 - May be able to delivery throughout the brain
 - May create “favorable” microenvironment via immune modulation
 - Able to delivery large proteins to cells of interest
 - Need to “Re-TALE”
Thank you

• Jan Nolta
 – Director Stem Cell Program
• Vicki Wheelock
 – Director Huntington’s disease clinic
• David Segal
 – Associated Director Genome Center
• Peter Deng
• Audrey Torrest
• Josh Gutierrez
• Anvita Komarla
• Joey Aprile

• Support for this project was provided by a NIH NRSA Postdoctoral Fellowship F32NS090722 (Fink)
• NIH NIGMS Predoctoral Fellowship T32GM099608 (Deng)
• California Institute for Regenerative Medicine (CIRM) DR2-05415 (Wheelock/Nolta)
• NIH Director’s transformative award 1R01GM099688 (Nolta)
• A Stewart’s and Dake Family Gift
• Philanthropic donors from the HD community, including the Roberson family and TeamKJ