HD Clinical Research Update:
Promise and Progress in disease modifying therapies

Vicki Wheelock MD
May 5, 2018
What’s new in HD?

• New treatment: Austedo, April 2017
• New global awareness: Papal audience, May 2017
• New research:
  – Insights into the Huntingtin gene and CAG repeats
  – Targeting neuro-inflammation
  – Huntingtin-lowering therapies
    • Anti-sense oligonucleotides:
      – Ionis-HTTrx
      – Wave Life Sciences
    • Other approaches
      – Stem cells – 2018 ☺
Who gets HD?

- Each child with a parent with HD has a 50% chance of inheriting the disease.

10% of cases arise in families without hx of HD

Worldwide Prevalence, minimum/100,000

Myers RH. J Am Soc Exper Ther 2004;255-262
The Search for the HD Gene

Dr. Nancy Wexler’s team visited Lake Maracaibo annually starting in 1979, identifying 18,149 individuals from HD families spanning 10 generations.

Dr. Ramon Avila-Giron, student of Dr. Americo Negrette, showed films of HD patients at the HD Centennial Meeting to a skeptical audience in 1972.

A new study from Nancy Wexler, in Venezuela in the 1990s with a boy with Huntington’s disease, suggests there may be ways to delay the onset of the disease.
The Huntingtin Gene discovered 1993

HD Collaborative Research Group  *Cell* 72:971–983  
http://hdsa.org/what-is-hd/
CAG expansion in the HD gene causes brain degeneration

HD Gene (HTT) is highly mutable

- **10% of cases have no family history of HD**
- **1/17 people** has between 27 – 35 CAG repeats on the HTT gene
- **Anticipation** with paternal inheritance: earlier onset
Relationship between CAG repeat length and age at onset


- CAG repeat length inversely correlates with age at onset
- Repeats in the reduced penetrance range may cause late-onset HD
- Repeats > 60 typically cause juvenile onset HD
- Two non-HD genetic variations have been identified that modify the age at onset

Fig. 1: The CAG repeat sizes for 220 persons HD diagnosed through the New England Huntington’s Disease Research Center are presented in relationship to the age at onset of motor impairment. Repeat size is strongly related to age at onset. Onset age before age 20 is usually associated with a repeat size of more than 60 CAG units. Among persons with adult onset, the range in onset age for a given repeat is large and may vary by 30 years or more and thus repeat size is not a good predictor of age at onset.
HD over the life cycle

HD Timeline

- AT-RISK
- PRODROMAL
- MOTOR MANIFEST
- ADVANCED-HD

Psychosocial Concerns

Cognitive Symptoms

Psychiatric Symptoms

Chorea, dystonia, falls

Weight loss, total care...

From Dr. Mary Edmondson
HDennomore
MAI PIÙ NASCOSTA • OCULTA NUNCA MÁS

POPE FRANCIS’ SPECIAL AUDIENCE WITH THE HUNTINGTON’S DISEASE COMMUNITY IN SOLIDARITY WITH SOUTH AMERICA
May 18, 2017 – Vatican City
Addressing the crowd on 18 May, Pope Francis spoke warmly, telling people that they are all precious in the eyes of the church. He then spent nearly an hour with about 150 patients, their families and their carers, greeting and hugging them one by one.
Goal: to raise awareness of HD and mobilize action to end the stigma and shame around the disease that has persisted for generations
Papal Audience
May 18, 2018

Anyervi, 13, and Brenda, 15, who both Juvenile Huntington’s.

Photograph: Pier Paolo Lisarelli

HD treatments: current and emerging

• **Symptomatic:**
  – FDA approved medications for chorea
  – Off-label medications for behavioral and other symptoms
  – HD study drug: STAIR study for irritability
  – Allied health therapies: physical, occupational and speech therapy

• **Care facilities**, palliative care and hospice

• **Disease modifying therapies…..**
  – STAIR and SIGNAL trials
  – Huntingtin-lowering treatments
  – Others
Inhibitors of **Vesicular MonoAmine Transporter 2** (VMAT2) block the release of dopamine and reduce chorea.
Deutetrabenazine (Austedo™)
Deutetrabenazine

- **Deuterium** is a naturally occurring stable isotope of hydrogen discovered in 1931
  - Nobel prize in Chemistry awarded (American Harold Urey, 1934)
  - 1/6420 H atoms in ocean

- **Deutetrabenazine** was designed by substituting naturally occurring deuterium molecule at 2 locations on tetrabenazine molecule

- This results in slower metabolism and less variability in blood levels.
Deutetrabenazine significantly reduced chorea scores compared to placebo in a 13 week randomized placebo-controlled study.
HD research studies
New insights: the HTT gene and CAG repeats

Dr. Elena Cattaneo receives HDSA 2017 Research Award
Dr. Cattaneo’s keynote address

https://vimeo.com/223226694

Elena Cattaneo is a professor of pharmacology in the University of Milan’s department of biosciences. She is also a senator with lifelong tenure in the Italian parliament. For more than 20 years Cattaneo’s laboratory has been studying Huntington’s and seeking therapies for it.
The HD gene is involved in early stage neural development. The CAG repeat length is associated with more complex brain development.
How do we study HD?

Fruit Flies  Mouse Models  Sheep  Pig

... and with observational studies and treatment trials in people with HD
SRX246: Safety, Tolerability, and Activity in Irritable Subjects with HD (STAIR)
How does SRX246 work?

• SRX246 blocks vasopressin$_{1A}$ receptors

• Vasopressin is increased in the brain during anger and aggression in both animals and humans.

• It may be helpful in treating irritability and aggression.
Male Rat Intruder Model

SRX246
NeuroNext STAIR Study

• **Safety, Tolerability, and Activity in IRritable subjects with HD; Sponsor: NIH/Azevan Pharmaceuticals**
• Therapeutic candidate: SRX246
• Mechanism: Vasopressin$_{1A}$ receptor blocker; also being tested in Intermittent Explosive Disorder and PTSD.
  – May have a milder side effect profile than other drugs currently used for this symptom.
• First study targeting irritability in HD
NeuroNext STAIR Study

• Study design: This is a 12 week, randomized, placebo-controlled, double-blind, dose escalation study of SRX246 in irritable subjects with early-moderate stage HD.
• Subjects: Must have current feelings of irritability, aggression or anger
• Treatment: SRX246 vs placebo
• Primary outcome measure: Tolerability
• Secondary outcome measures: Rating scales for irritability
If you are interested in possible participation in the **STAIR** study, please call Amanda Martin at (916)734-3514, or e-mail at: alema@ucdavis.edu

This study is now CLOSED.
SIGNAL Trial

• Sponsor: Vaccinex and the Huntington Study Group
• Therapeutic candidate: VX 15/2503, a monoclonal antibody designed to target the semaphorin 4D (SEMA4D) protein
• Mechanism: reduction of neuroinflammation, possible increase neuronal progenitor survival, and increase oligodendrocyte migration and maturation
• First-time use of monoclonal antibody in HD
SIGNAL Study

- Study design: Phase 2 multi-center, randomized, double-blind, placebo controlled study of VX15/2503.
- Subjects include 84 individuals who have undergone genetic testing for HD and have the HD gene expansion, with prodromal HD or very early stage HD.
- Treatment is via monthly intravenous infusions for 6 or up to 18 months.
- Primary outcome measure is safety and tolerability of VX15/2503.
SIGNAL Study

• Update: the first Cohort of subjects have completed this trial.

• The sponsors have expanded the SIGNAL trial to 240 participants and it is still actively enrolling

• Study assessments will include monthly visits for infusions, motor, cognitive and behavior rating scales MRI brain scans and spinal taps

See the Huntington Study Group website for further details and list of sites.
Biggest news in HD research since 1993....

[Diagram showing the process of DNA, mRNA, and protein conversion, with an additional step for antisense oligonucleotides binding to mRNA and causing it to be destroyed.]

Excitement as trial shows Huntington's drug could slow progress of disease

Hailed as ‘enormously significant’, results in groundbreaking trial are first time a drug has been shown to suppress effects of Huntington’s genetic mutation

A landmark trial for Huntington’s disease has announced positive results,
Anti-sense oligonucleotides (ASOs)

- These are single-stranded DNA building block sequences that are designed to target specific messenger RNA that are complementary
- Once targeted, the RNA part of the DNA/RNA duplex is destroyed by an enzyme
- The ASO can then be recycled to act again and again.

https://en.hdbuzz.net/204
“Huntingtin Holiday”

Intra-thecal delivery: spinal tap
Spinal muscular atrophy (SMA): motor neuron disease in infants and children

Developed by Ionis and Biogen

The first ASO drug for neurological disease approved by FDA December 2016

Given via spinal tap every 2 weeks for three doses, then once every 4 months
ASO treatment in Rhesus monkey

- Rhesus monkey brain 180x larger than mouse, brain and 1/15th of human brain size.
- ASO given via spinal tap
- Mutant HTT was reduced in some brain areas (cortex) but not others (caudate)

IONIS-HTT_{Rx} trial

• Title: Safety, tolerability, pharmacokinetics, and pharmacodynamics of IONIS-HTT_{Rx} in patients with early manifest Huntington’s disease.

• Sponsor: IONIS Pharmaceuticals, in partnership with Roche Pharmaceuticals and CHDI

• Phase 1/2 randomized, placebo-controlled, double-blinded study to evaluate the safety and tolerability of ascending doses of IONIS-HTT_{Rx} administered in 4 monthly intrathecal injections over a 13-week period.

• The study was conducted in Canada and the UK.

• Planned enrollment was 36.
Dec 11, 2017:  
Phase 1 /2 Study results

• 46 people with early stage HD were treated for 13 weeks with four intrathecal injections of 10 mg, 30 mg, 60 mg, 90 mg or 120 mg of IONIS-HTT\textsubscript{Rx} or placebo, administered monthly.

• Significant, dose-dependent reductions in mHTT were observed in CSF of treated participants with mHTT reductions of up to approximately 60%
Dec 11, 2017: Phase 1/2 Study results

• **No serious side effects** were reported in treated participants. Most were mild and considered to be unrelated to study drug. No participants discontinued from the study.

• **An open-label extension study** for patients who participated in the Phase 1/2 study is ongoing.

The next step....

• Will be to conduct a safety and efficacy study to investigate if decreasing mutant huntingtin protein with IONIS-HTT_{Rx} can benefit people with Huntington’s disease.

• Future studies for the program will be conducted globally, including the U.S.

• Roche will announce details about studies, including eligibility criteria and planned start dates, as this information becomes available.
Questions about the next study

Dr. Leora Fox, HDSA

- What is the significance of the Ionis study findings?
- Does IONIS-HTT\textsubscript{Rx} really work?
- What are the next steps?
- How long will this take?
- Can I sign up for the trial, or put my name on a list?
- What can I do right now?
A new approach: Allele-specific ASO

In most HD patients, there are tiny genetic differences called SNPs in the huntingtin gene outside of the CAG repeat expansion region that can allow scientists to target ONLY the expanded huntingtin mRNA, leaving the health “wild-type” huntingtin mRNA unaffected.

This approach may have less toxicity.
Introduction to a new acronym: SNP

Single Nucleotide Polymorphism, pronounced “snip”

SNPs are single-nucleotide substitutions of one base for another. Each SNP location in the genome can have up to four versions: one for each nucleotide, A, C, G, and T.

http://learn.genetics.utah.edu/content/precision/snips
Not all single-nucleotide changes are SNPs

To be classified as a SNP, two or more versions of a sequence must each be present in at least one percent of the general population.

SNPs occur throughout the human genome: about one in every 300 nucleotide base pairs. This translates to about 10 million SNPs within the 3-billion-nucleotide human genome.

http://learn.genetics.utah.edu/content/precision/snips
Taking advantage of SNPs: Allele-specific ASO

Huntingtin Gene (HTT)

Wild-type (healthy) allele

Mutant allele

Expanded CAG repeat

SNP associated with expanded CAG repeat

Enables targets for allele-specific silencing

Courtesy Dr. Michael Panzara, WAVE Life Sciences
HD SNP1 and SNP2 are found in about \( \frac{2}{3} \) of HD patients.

*Courtesy Dr. Michael Panzara, WAVE Life Sciences*
WAVE ASOs for SNP1 and SNP2

In reporter cell and in patient cell lines:

• Both significantly reduce the messenger RNA levels with minimal effect on wild type mRNA levels.

• Both significantly reduce the mutant huntingtin protein levels with minimal effect on wild type huntingtin

Courtesy Dr. Michael Panzara, WAVE Life Sciences
- In non-human primate studies
  - The ASO is easily detected in the cortex and the deep structures of the brain after delivery via spinal tap (“intrathecal route”)

In Situ Hybridization ViewRNA stained tissue

Animal # 42, Slice 8

Red dots are WVE-120101. Arrow points to nuclear and perinuclear distribution of WVE-120101 in deep gray matter structures

Courtesy Dr. Michael Panzara, WAVE Life Sciences
PRECISION HD Trials
WAVE ASO 1 and ASO 2

• First-in-human Phase 1 trials initiated in 2017 in Canada and Europe, with start-up in US in 2018
• Primary objective: Assess safety and tolerability of intrathecal doses in early manifest HD patients
• Patient SNP determination (SNP-1, SNP-2, other) at pre-screening visit
• Approximately 60 patients per trial
• Key inclusion criteria:
  — Age ≥25 to ≤65, Stage I or Stage II Huntington’s disease

Courtesy Dr. Michael Panzara, WAVE Life Sciences
# HD research pipeline update from the Huntington Study Group 2017 meeting

<table>
<thead>
<tr>
<th>Company</th>
<th>Product/mechanism</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionis</td>
<td>HTT&lt;sub&gt;Rx&lt;/sub&gt; anti-sense oligonucleotide (ASO)</td>
<td>Intrathecal (spinal tap)</td>
</tr>
<tr>
<td>Wave</td>
<td>Allele-specific ASOs</td>
<td>Intrathecal (spinal tap)</td>
</tr>
<tr>
<td>UniQure</td>
<td>AAV5 vector carrying an artificial micro-RNA specifically tailored to silence the</td>
<td>Direct brain implantation</td>
</tr>
<tr>
<td></td>
<td>huntingtin gene.</td>
<td></td>
</tr>
<tr>
<td>Voyager</td>
<td>AAV capsid and transgene to harness endogenous RNA interference pathway to knockdown</td>
<td>Direct brain implantation</td>
</tr>
<tr>
<td></td>
<td>mHTT</td>
<td></td>
</tr>
<tr>
<td>Nuredis</td>
<td>small molecules to interrupt mHTT RNA transcription</td>
<td>Potential oral or subQ</td>
</tr>
</tbody>
</table>
Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington’s Disease Mice

Jack C. Reidling,1,11 Aroa Relaño-Ginés,2,11 Sandra M. Holley,3,11 Joseph Ochaba,4 Cindy Moore,5 Brian Fury,6 Alice Lau,7 Andrew H. Tran,1 Sylvia Yeung,1 Delaram Salamati,1 Chunni Zhu,2 Asa Hatami,2 Carlos Cepeda,3 Joshua A. Barry,3 Talia Kamdjou,3 Alvin King,4 Dane Coleal-Bergum,6 Nicholas R. Franich,2 Frank M. LaFerla,1,4 Joan S. Steffan,1,7 Mathew Blurton-Jones,1,4,8 Charles K. Meshul,5,9 Gerhard Bauer,6 Michael S. Levine,3,10 Marie-Francoise Chesselet,2 and Leslie M. Thompson1,4,7,8,*
Results

Human embryonic stem cell-derived neurons

- R6/2 mouse, implanted age 5 weeks, sacrificed at 9 weeks:
  - Improved motor behavior
  - Implanted cells showed potential synaptic connections with the stem cells
  - Good cell survival
  - Decreased mutant huntingtin aggregation

- Q140 Knock-in mice, implanted at 2 months, sacrificed at 8 months
  - Improved pole test performance
  - Improved behavior (novel object recognition)
  - Good cell survival
  - Increased BDNF levels
  - Decreased microglial activation
  - Decreased mutant huntingtin aggregation
Results

Q140 Knock-in Mouse following implantation

B

Mean Turns/ 3min

Nights in Running Wheel

- WT Veh
- Q140 Veh
- Q140 hNSC

***

**

*
Next steps in HD stem cell research

• Dr. Nolta has 2 major NIH grants to continue research
• Dr. Thompson and other researchers starting a consortium to aid in design of development, testing, delivery of stem cell therapies
Gene Editing for HD

Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington’s Disease Fibroblasts

Kyle D. Fink,* Peter Deng,*† Josh Gutierrez,* Joseph S. Anderson,* Audrey Torrest,* Anvita Komarla,*† Stefanos Kalomoiris,* Whitney Cary,* Johnathom D. Anderson,* William Gruenloh,* Alexandra Duffy,‡ Teresa Tempkin,‡ Geralyn Annett,* Vicki Wheelock,‡ David J. Segal,† and Jan A. Nolta*

*Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health Systems, Sacramento, CA, USA
†Genome Center, MIND Institute, and Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
‡Department of Neurology, University of California Davis Health Systems, Sacramento, CA, USA
• In the last year we have seen extraordinary progress for HD patients and families
• New insights about the huntingtin gene across species and ideas about CAG repeat length
• Increased global recognition about HD
• First huntingtin-lowering drug trial results announced and show great promise
• New research in the pipeline: many approaches
What can you do?

Don’t just stay tuned, stay CONNECTED....
Our work in HD has been inspired and generously supported by HD patients and family members.

We are grateful to the Joseph P. Roberson Foundation, the Charles and Margaret Pue Charitable Foundation, HDSA, Help4HD and many others who have contributed to our HD care and research programs at UC Davis.

https://www.ucdmc.ucdavis.edu/huntingtons/
See you in LA ....