Contact Information

Partnering goals (summary)

How relates to Merck’s Partnering Interests (disease area, page #)

Introduction/Business Opportunity

EXAMPLE 1:
Celldata will be the first to deliver a *universally applicable, non-invasive, and inexpensive to use and produce* diagnostic platform that will beneficially alter the breast cancer diagnostic pathway. The BreastScan platform capitalizes on the crucial need in breast cancer diagnostics – the accurate differentiation between truly malignant and benign mammogram results. BreastScan utilizes novel technology to confirm the absence of malignant cells, thus diverting patient management from the costly path of diagnosis by biopsy into a more efficient and cost-effective pathway. Initial indication specifically targets obese women and younger women with dense breast tissue, for whom few diagnostic options exist.

Twenty-five million women undergo yearly mammogram and physical breast exam. 2.5 million will be “recalled” and sent for secondary diagnostic procedures. From those, over one million women (with 5% growth rate) will undergo biopsy as an ultimate diagnostic method, but only 10-35% of biopsies will lead to diagnosis of malignancy. Biopsy as a method for “management” of breast cancer is overused in the United States. Moreover, Medicare estimates the error rates for biopsy to range from 0.2% to 20%. Outcomes analyses clearly point to an unmet market need for the non-invasive low-cost universal procedure, which would qualify mammography results and correctly differentiate between benign and malignant findings, decreasing the need for biopsies as a diagnostic method. Based on number of procedures and on market for currently existing secondary diagnostic methods, the market for just this indication is estimated to be $400M.
Core Technology

1. Description of the technology
2. Summary of Features and Benefits:

EXAMPLE:

Summary of features and benefits of ACA II technology for surfactant delivery.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing flow patterns via air flow probe</td>
<td>Direct calculations of inhaled volume; Automatic start and stop of aerosol delivery</td>
</tr>
<tr>
<td>Input of individual patient and ventilator circuit parameters</td>
<td>Direct calculation of airways dead space; Enough air continues to flow through to “chase” surfactant into the lungs</td>
</tr>
<tr>
<td>Automated dose control</td>
<td>More than 80% efficiency in aerosol delivery; Programmable to provide automatic repeat dosing; Minimization of operator error</td>
</tr>
<tr>
<td>Portable, inexpensive, miniaturized</td>
<td>Easy set-up, transport, installation</td>
</tr>
<tr>
<td>Fits in most ventilator circuits</td>
<td>Universal</td>
</tr>
<tr>
<td>Less expensive than current therapy</td>
<td>Affordable for most population, third world countries and humanitarian assistance groups</td>
</tr>
</tbody>
</table>

3. Competition and Competitive Advantages

Include brief comparison of your drug/device with the competition. Include product pricing, sales data (if available) and names of companies in the space (CTSC will help with the data). Competitive Advantages: why your idea/product is better than what is available on the market.

Stage of Technology Development

Which research milestones have been completed, what data gathered to date, what must be done to complete development, what risks you may face and how to you plan to mitigate these risks. This section should be brief, a “helicopter view” of your research project. Do not need to include specific research details like you do for NIH.

Intellectual Property

EXAMPLE:

The Intellectual property assets include U.S. patent application titled “Device and Method for Assessing the Electrical Potential of Cells and Method of Manufacture of Same” (priority 3/7/03 filing), diagnostic algorithms, patient management applications and software, copyrights, know-how, and trade secrets. The patent application claims cover broad aspects of the manufacture and scientific use of the products, present and future, including the high-density disposable electrode array discussed herein.