Skip to main content
UC Davis Health System

UC Davis Health System

UC Davis researchers successfully test new tool for imaging live cells

Utilizing Deconvolution vs Blaze © UC Regents 2011
The lower resolution images are all using deconvolution microscopy (which is similar to confocal) while the high resolution images are all using Blaze.

Posted Nov. 9, 2011

As exclusive beta testers of the world's most powerful wide-field fluorescence imaging platform, researchers at the UC Davis-based Center for Biophotonics Science and Technology (CBST) have for the first time successfully imaged the movement of fluorescently labeled nanoscale compartments inside live tumor cells. 

The achievement holds promise for future breakthroughs in understanding the molecular causes and biomechanics of cancer and a wide range of other diseases  while also advancing neuroscience and stem cell research, among other disciplines.

"Biomedical research is the final frontier in looking at biology at the cellular and molecular levels," explains Frank Chuang, CBST associate director of research. "This tool helps us see living biology as it's occurring. Its potential research applications are very exciting, including monitoring how cells respond to chemotherapy, looking at the mechanisms of radiation resistance, and investigating how viruses transfer from cell to cell."

Utilizing microscope featuring true 3-D high-speed structured illumination

For their platform, researchers used the first commercially available microscope featuring true 3-D high-speed structured illumination, a microscopy technique developed by UC researchers that improves the resolution of a fluorescence light microscope by at least a factor of two.

Dr. Hsing-Jien Kung © UC Regents"The development of a high-resolution, live-cell imaging approach should accelerate our understanding of this enigmatic process, paving the way for the development of autophagy modulators."
— Hsing-Jien Kung

In a technology transfer success story, in 2007 Seattle-based Applied Precision (API) licensed intellectual property from UC San Francisco for commercialization of a structured illumination microscope custom prototype, dubbed OMX version 1.0, with OMX standing for Optical Microscope eXperimental.

In the intervening years, API, a GE Healthcare company, refined the microscope's capabilities, and working with CBST, established with a grant from the National Science Foundation on the UC Davis Health System campus. Three months ago, CBST became the first lab to install and demonstrate the capabilities of the much faster commercial prototype, the DeltaVision OMX V4 SI™.

It incorporates an ultra-fast structured illumination module and advanced high-speed scientific cameras. Combined, they enable true 3-D super-resolution fluorescence imaging of live cells over a large area for the first time. Thus the microscope is capable of resolving intracellular structures with greater detail than previously thought possible with any light microscope.

"The breakthrough is using structured illumination with moving objects, including live cells," reports CBST chief scientific officer Stephen Lane. "Previously, commercial optical microscopes using structured illumination have only been able to image fixed, or non-moving, samples."

About the Center for Biophotonics, Science and Technology

Established in 2002 with a grant from the National Science Foundation, the Center for Biophotonics, Science and Technology at UC Davis is focused on advancing biomedicine and photonics engineering to improve human health. In partnership with eight other university campuses and Lawrence Livermore National Laboratory, the center focuses its intellectual, scientific, educational and industrial outreach efforts to develop new tools and technologies that apply the science of light to answer important questions in medicine.

Center faculty collaborate with basic scientists and physicians to bring advanced technologies from the laboratory to the clinic. For example, advanced video imaging microscopy to record the behavior of live cells is advancing the diagnosis and treatment of disease.

As national leaders in the biophotonics field, center faculty are formulating the first strategic roadmap for biophotonics research and are building a worldwide network of schools, industrial partners and other biophotonics research centers to train the next generation of scientists.

Learn more about CBST.

CBST has been providing testing results to API for the last three months. Based on CBST feedback, the company will further refine the instrument before making the resulting new version commercially available to labs around the world.

Pioneering imaging techniques

As a proof of concept, CBST biomedical researchers led by UC Davis Professor Hsing-Jien Kung recently used the tool for the first-ever imaging of the movement of nanoscale compartments inside live tumor cells. These compartments, which capture organelles and macromolecules for delivery to lysosomes, are key components of an intracellular recycling process known as autophagy.

"In autophagy, or self-eating, cells eat away wasted materials to regenerate energy during stress," explains Kung, whose lab focuses on the identification of genetic and related factors contributing to the development of human malignancies. "Tumor cells often utilize the same process to prolong their survival, diminishing drug efficacies."


Video of three dimensional renderings of a group of
fluorescent autophagosomes using Blaze.

UC Davis scientists are developing techniques to better quantify and characterize the autophagic response in prostate cancer cells, with the goal of improving cancer chemotherapy through the effective modulation of autophagy. Until now, it has been nearly impossible to study the early events associated with the induction of autophagy, because newly formed autophagosomes are too small and move too quickly to be imaged with conventional microscopes.

"The development of a high-resolution, live-cell imaging approach should accelerate our understanding of this enigmatic process," says Kung, "paving the way for the development of autophagy modulators."

CBST scientists anticipate that, with its 3-D capabilities, high speed and high-spatial resolutions, this microscope and its follow-ons will greatly facilitate the visualization of biological processes at the subcellular level, enabling new discoveries and the advancement of molecular medicine.

The instrument's many technical advances include super-resolution so high that objects as small as 1/10th of a micron can be imaged; eight times better contrast than conventional microscopes; the capacity to see two fluorescent wavelengths simultaneously for dual-color images and the ability to image a 3-D stack of 15 slices through the sample once per second, a high speed rarely, if ever before, achieved in a commercial instrument.