Skip to main content
UC Davis Health System

UC Davis Health System

UC Davis researchers discover a key to aggressive breast cancer

HER2 advances tumor growth by shutting down its own suppressor

breast xray
Building on recent research showing that the regulator — labeled LRIG1 and commonly called "Lig-1" — limits the growth-promoting signals of HER², the research team set out to clarify the role of Lig-1 in breast cancer.

In trying to find out why HER2-positive breast cancer can be more aggressive than other forms of the disease, UC Davis Cancer Center researchers have surprisingly discovered that HER2 itself is the culprit. By shutting down its own regulator gene, HER² creates a permissive environment for tumor growth.

Building on recent research showing that the regulator — labeled LRIG1 and commonly called "Lig-1" — limits the growth-promoting signals of HER2, the research team set out to clarify the role of Lig-1 in breast cancer.

They found that, when compared to healthy breast tissue, the regulator is significantly suppressed.

"This suppression assists HER2 in its own over-expression and in driving the growth of cancer cells," said Colleen Sweeney, associate professor of biochemistry and molecular medicine and senior author of the study, which appeared in Cancer Research. "HER2 is clearly taking an active role its own ability to be successful in promoting cancer."

Opening the path towards new treatments

Sweeney added that the study results could lead to new treatments aimed at restoring or replacing functions of the regulator. This is good news for patients because, in addition to being more aggressive, HER2-positive breast cancer tends to be less responsive to currently available treatments. The gene is over-expressed in about one-quarter to one-third of breast cancer cases.

Sweeney and colleagues began by studying mouse models of breast cancer with genomes that carry extra copies of HER2. They noticed an excess of HER2 protein in the resulting tumors, but it was not over-expressed in adjacent healthy tissues that also carried extra copies of the HER2 gene.

Research into HER2 and Lig-1

"That suggested to us that extra copies of HER2 alone are not enough to explain its over-expression. If it was, HER2 would have been over-expressed in both normal and tumor tissues from these mice," she said.

Colleen Sweeney"HER2 is clearly taking an active role its own ability to be successful in promoting cancer."
— Colleen Sweeney, study senior author

Given that observation, the team set out to determine what, exactly, created the permissive environment for HER2 over-expression. Given its tumor-suppressor role, Lig-1 levels were compared in the mouse models.

They found that Lig-1 was greatly diminished in tumor tissues when compared to the normal tissues. The researchers next conducted a series of laboratory experiments using human breast cancer cell lines and a technique called RNA interference that allows for selective depletion of cellular proteins.

Interestingly, they found the same results in the human breast cancers that they found in mice. In fact, 60 percent of 67 tumors analyzed showed a loss of the Lig-1 protein and its levels were, on average, 33 percent lower in tumor tissue versus healthy breast tissue.

"There was a clear inverse relationship between Lig-1 and HER2," said Sweeney. "When we depleted Lig-1, cancer cells grew almost 50 percent faster, while the opposite occurred when we restored Lig-1 to healthy levels. We also found that depleting HER2 levels resulted in an increase in Lig-1 levels, while activating HER2 resulted in Lig-1 depletion."

About UC Davis Cancer Center

UC Davis Cancer CenterDesignated by the National Cancer Institute, UC Davis Cancer Center cares for 9,000 patients each year.

The center's Breast Cancer Program provides comprehensive, multidisciplinary services for patients with all stages of the disease. Patients receive their care in one location, from a team of top academic physicians and researchers with expertise in hematology and oncology, surgical oncology, radiation oncology, pathology, plastic and reconstructive surgery, and diagnostic radiology/mammography.

Experts work together to develop individualized treatment plans for each patient. For more information, visit www.ucdmc.ucdavis.edu/cancer/

According to Sweeney, the results may help explain why, even among patients with HER2-positive breast cancer, the disease process can vary dramatically.

"We think Lig-1 levels could be linked to prognosis. Patients with more of the regulator gene's functions intact are going to have a better outcome than those with less," she said. Results of the current study further support the notion that Lig-1 serves as a tumor suppressor gene, though more work is needed to confirm this outcome. Sweeney and her team are gathering more evidence to support this theory and to determine whether or not Lig-1 levels are truly predictive of outcome for HER2-positive patients. If so, it will suggest that, while this type of test is not available today, these patients should in the future be screened for Lig-1 activity in order to better define treatment subgroups.

"It's clear that stratifying breast cancer patients as either HER2-positive or HER2-negative is not telling the whole story. This research takes us a step further in the right direction toward better understanding types of breast cancer and treatment targets for those different types," Sweeney said.

Additional study authors were lead author Jamie Miller, a recent graduate of the Sweeney lab; co-authors David Shattuck, Ellen Ingalla, Lily Yen and Kermit Carraway of UC Davis Cancer Center; and Alexander Borowsky, Larry Young and Robert Cardiff of the UC Davis Department of Medical Pathology and Laboratory Medicine.

This research highlights the ongoing collaborative efforts of the UC Davis Breast Cancer Research Program. It was supported by National Institutes of Health grants to Sweeney and Carraway and predoctoral fellowships from the Department of Defense Breast Cancer Research Program to Miller and Shattuck.