Skip to main content
UC Davis Health System

UC Davis Health System

$5 million grant extends research partnership to image the living eye at UC Davis

Healthy optic nerve head
Healthy optic nerve head

The National Eye Institute has awarded a $5 million research grant to UC Davis ophthalmologist John S. Werner and researchers at three other universities to continue the development of technology for three-dimensional imaging of cells in the living eye.

The studies, part of the next, five-year phase of the Bioengineering Research Partnership, could benefit the approximately 20 percent of Americans above the age of 60 suffering from the sight-threatening consequences of age-related macular degeneration and glaucoma. It would provide significant advances in understanding the origins of retinal and optic nerve disease and in evaluating novel therapies for a wide spectrum of human blinding diseases.

“Our project has been described as the Hubble telescope of the eye,” said Werner, the project’s principal investigator and a professor at the UC Davis Health System Eye Center.

“Vision and visual disorders begin at the cellular and molecular levels, yet the ability to visualize most cellular structures in vivo continues to elude scientists and clinicians,” said Werner, whose research interests include changes in vision across the life span and diseases of the retina and optic nerve. “Despite extraordinary advances in retinal imaging, only a small fraction of human retinal cells have been visualized in the living eye.”

The first phase of the partnership, started in 2003, created a breakthrough in imaging technology by combining adaptive optics and optical coherence tomography to provide high-lateral and high-axial resolution, respectively. The initial phase also was funded by a five-year, $5 million grant from the National Eye Institute.

Dr. Werner“Our project has been described as the Hubble telescope of the eye.”
— John Werner, project principal investigator and professor at the UC Davis Health System Eye Center

Led by Werner, investigators used this new instrumentation to create volume images of structures previously only visible with histology, including the photoreceptor outer segments, Fibers of Henle, individual optic nerve fiber bundles, detailed structures within the drusen, or lesions, of macular degeneration patients, and the fine structure of the lamina cribosa of the optic nerve. They developed instrumentation with sufficient resolution to image all the major retinal neurons in three dimensions.

However, while the resolution of their instruments reached the cellular scale, many cells and structures of interest were of low contrast. As a result, the major engineering focus of the next five years will be on contrast enhancement through additional imaging techniques. The resulting adaptive optics and optical coherence tomography instruments will permit human in vivo imaging with sufficient resolution and contrast to visualize the smallest of cells in the human retina.

Partner institutions include Duke University, Department of Bioengineering; Indiana University, Department of Optometry; and Lawrence Livermore National Laboratory, Physics and Advanced Technologies Section.

Cell layer affected by macular degeneration
Cell layer affected by macular degeneration

The project’s engineering aims have parallel clinical/vision science objectives, including advancing the understanding of changes in cell layers associated with the most common worldwide diseases leading to blindness, including age-related macular degeneration and glaucoma.

The National Eye Institute is part of the U.S. National Institutes of Health. It conducts and supports research that helps to prevent and treat eye diseases in order to develop sight-saving treatments and to reduce visual impairment and blindness.

UC Davis Health System is an academic medical center that includes a top-ranked school of medicine, a 577-bed acute care hospital, the proposed Betty Irene Moore School of Nursing, a National Cancer Institute-designated cancer center, the unique M.I.N.D. Institute for the study of neurodevelopmental disorders, a comprehensive children's hospital, a level 1 trauma center and outpatient clinics in communities throughout the Sacramento region. Consistently ranked among the nation's top medical schools and best hospitals, UC Davis has established itself as a national leader in telehealth, rural medicine, cancer, neurodevelopmental disorders, vascular medicine, and trauma and emergency medicine. Other areas of research strength include clinical and translational science, regenerative medicine, infectious disease, neuroscience, functional genomics and mouse biology, comparative medicine and nutrition, among many others.