Skip to main content
Department of Urology

Department of Urology

Examples of Dr. Evans’ Research

 

Effect of the specific Src family kinase inhibitor saracatinib on
osteolytic lesions using the PC-3 bone model
. 

Yang JCBai LYap SGao ACKung HJEvans CP.
Department of Urology, University of California at Davis, Sacramento, California 95817, USA. 

Abstract

The hematogenous metastatic spread of prostate cancer is preferentially to bone and can result in significant patient morbidity. Although these metastatic lesions are typically osteoblastic, bone resorption is believed to have a prerequisite role in their development. Src kinase has been identified to contribute to prostate cancer tumor growth and metastasis. In addition, Src is also essential in bone metabolism, especially in bone resorption. We hypothesized that inhibiting Src activity with the specific Src family kinase inhibitor saracatinib (AZD0530) would inhibit tumor cell growth and osteoclast differentiation in the tumor-bone interface, thus providing a new approach for advanced prostate cancer. We found that saracatinib inhibited PC-3 cell growth and invasion in a dose-dependent manner. Phosphorylation of Src, focal adhesion kinase, and P38 kinases was inhibited by saracatinib at the submicromolar range. Saracatinib also inhibited the expression and secretion of invasion-related molecules interlukin-8, urokinase-type plasminogen activator, and matrix metalloprotease-9. Receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis and signaling were inhibited by saracatinib in both macrophages and PC-3 cells. In in vivo studies, control mice developed more severe osteolytic lesions compared with the treatment group. Immunohistochemical and biochemical assays of bone metabolites confirmed that saracatinib preserved bone architecture in the presence of prostate cancer tumor cells. In summary, we have shown the inhibition of PC3 cell growth and invasion by saracatinib. Src inhibition also blocked the RANKL stimulatory pathway in osteoclasts and PC3 cells. The inhibition of Src thus targets multiple sites involved in prostate cancer bone metastasis, which may offer a therapeutic advantage in treating advanced prostate cancer.

 

Aberrant activation of androgen receptor in a new neuropeptide-autocrine model of androgen-insensitive prostate cancer. 

Yang JCOk JHBusby JEBorowsky ADKung HJEvans CP.
Department of Urology and Biological Chemistry, School of Medicine,
University of California at Davis, Sacramento, CA 95817, USA

Abstract

Treatment of advanced prostate cancer with androgen deprivation therapy inevitably renders the tumors castration-resistant and incurable. Under these conditions, neuroendocrine differentiation of prostate cancer (CaP) cells is often detected and neuropeptides released by these cells may facilitate the development of androgen independence. Exemplified by gastrin-releasing peptide (GRP), these neuropeptides transmit their signals through G protein-coupled receptors, which are often overexpressed in prostate cancer, and aberrantly activate androgen receptor (AR) in the absence of androgen. We developed an autocrine neuropeptide model by overexpressing GRP in LNCaP cells and the resultant cell line, LNCaP-GRP, exhibited androgen-independent growth with enhanced motility in vitro. When orthotopically implanted in castrated nude mice, LNCaP-GRP produced aggressive tumors, which express GRP, prostate-specific antigen, and nuclear-localized AR. Chromatin immunoprecipitation studies of LNCaP-GRP clones suggest that GRP activates and recruits AR to the cognate promoter in the absence of androgen. A Src family kinase (SFK) inhibitor, AZD0530, inhibits androgen-independent growth and migration of the GRP-expressing cell lines, and blocks the nuclear translocation of AR, indicating the involvement of SFK in the aberrant activation of AR and demonstrating the potential use of SFK inhibitor in the treatment of castration-resistant CaP. In vivo studies have shown that AZD0530 profoundly inhibits tumor metastasis in severe combined immunodeficient mice implanted with GRP-autocrine LNCaP cells. This xenograft model shows autocrine, neuropeptide- and Src kinase-mediated progression of androgen-independent CaP postcastration, and is potentially useful for testing novel therapeutic agents.