UCDAVIS HEALTH SYSTEM

Department of Pathology and Laboratory Medicine University of California Davis Medical Center

A HEALTHIER WORLD THROUGH BOLD INNOVATION

Screening for Lynch Syndrome in Endometrial Carcinoma: Practical Considerations

M. Tomic, M.D.

A HEALTHIER WORLD THROUGH BOLD INNOVATION

Financial Disclosures

NONE!

Lynch Syndrome: Definition

- Autosomal dominant genetic disorder that confers an increased risk of cancer
 - 2-3% of endometrial carcinomas are Lynch syndrome associated
 - In women, endometrial cancer and colorectal cancer are equally likely to be the sentinel cancer

Lynch Syndrome: Genetics

Germline mutation that leads to loss of function of a mismatch repair (MMR) protein

Lynch Syndrome: Mismatch Repair

- The MMR system recognizes and repairs base pair mismatches. The consequence of impaired MMR is an increased mutation rate with biallelic loss.
 - Recognition
 - MutS-alpha heterodimer: MSH2 and MSH6
 - MutS-beta heterodimer: MSH2 and MSH3
 - Repair
 - MutL-alpha heterodimer: MLH1 and PMS2
 - MutL-beta heterodimer: MLH1 and PMS1
 - MutL-gamma heterodimer: MLH1 and MSH3
 - EpCAM
 - Upstream from MSH2, large deletions in 3' end cause silencing of MSH2

- Microsatellite instability
 - MSI testing
- Loss of protein expression
 - Immunohistochemistry

Microsatellite instability

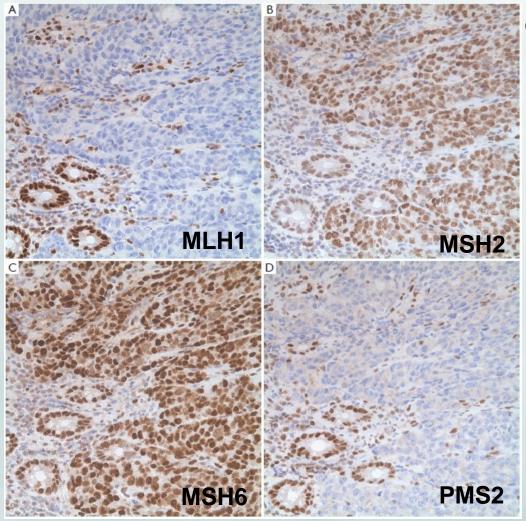
- Lynch syndrome carcinomas show high frequency microsatellite instability (MSI-H)
- Microsatellites are regions of repetitive nucleotide sequences
- These regions are particularly prone to DNA mismatches
- Mismatch leads to lengthening or shortening of the microsatellite

Microsatellite instability

- Testing employs PCR to amplify regions containing microsatellites in tumor and normal tissue. Amplification products are separated by capillary electrophoresis
 - MSI-High is defined by instability in ≥30% of examined microsatellites (or 2 loci in a 5 marker panel)
 - MSI-Low is defined by instability of <30% of examined microsatellites
 - MSS (Microsatellite stable) is defined by no instability

Not All MSI-H Tumors are Lynch Associated!!!

- Sporadic MSI-H colorectal and endometrial carcinomas
 - Silencing of MLH1 due to promoter methylation
 - Sporadic MSI-H colorectal carcinomas
 - BRAF V600E present in sporadic but *not* Lynch associated carcinomas
 - Sporadic MSI-H endometrial carcinomas
 - Lack the BRAF V600E mutation so must assess for promoter methylation


MSI Caveats

- MSS and MSI-L can be seen in cases with germline mutation of MSH6
- Sensitivity is likely affected by the composition of microsatellite markers used
 - Mononucleotide repeats are more sensitive

- Loss of protein expression
 - Detected by immunohistochemistry for MLH1, PMS2, MSH2, MSH6 performed on tumor
 - Four patterns
 - No staining for MLH1 and PMS2 due to loss of MLH1
 - No staining for PMS2 due to loss of PMS2
 - No staining for MSH2 and MSH6 due to loss of MSH2 (or EPCAM)
 - No staining for MSH6 due to loss of MSH6

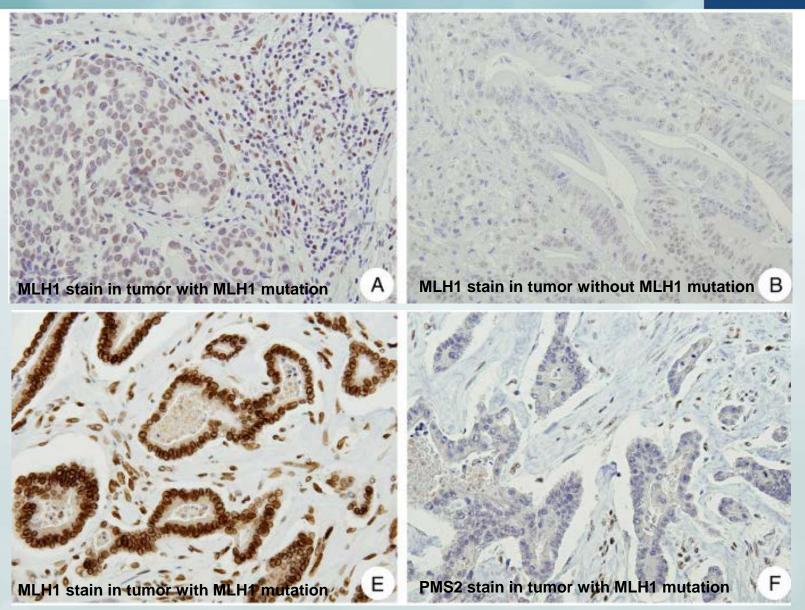
Colonic adenocarcinoma: IHC pattern consistent with loss of MLH1

Fleming M. et al. Journal of Gastrointestinal Oncology 2012; 3: 153-173.

MMR IHC Caveats

- Lack of clearly defined and agreed upon criteria for interpretation
- United Kingdom National External Quality Assessment Service: 2008 Recommendations
 - Normal: similar staining intensity in tumor and internal control
 - <u>Abnormal</u>: no staining in tumor with positive staining in internal control, *or* patchy or weak staining in tumor compared to internal control

MMR IHC Caveats


	Overbeek et al. 2008 % of cases with consensus interpretation (5/7 pathologists)	Klarskov et al. 2010 % of cases with consensus interpretation (5/6 pathologists)	
MLH1	89%	83%	
PMS2	96%	91%	
MSH2	93%	94%	
MSH6	87%	76%	

- Klarskov et al. identified weak staining as primary cause of lack of consensus
- Stratified weak staining into
 - Technically weak weak staining in tumor and internal control
 - Biologically weak weaker staining in tumor compared to control
 - 19 tumors showed a biologically weak pattern, 8 carried a disease predisposing mutation

Overbeek J. et al. Human Pathology 2008; 39:116-125. Klarskov et al. Human Pathology 2010; 41:1387-1396.

UCDAVIS HEALTH SYSTEM

A HEALTHIER WORLD THROUGH BOLD INNOVATION

Klarskov et al. Human Pathology 2010; 41: 1387-1396.

Findings from the EGAPP (Evaluation of Genomic Applications in Practice and Prevention) Working Group

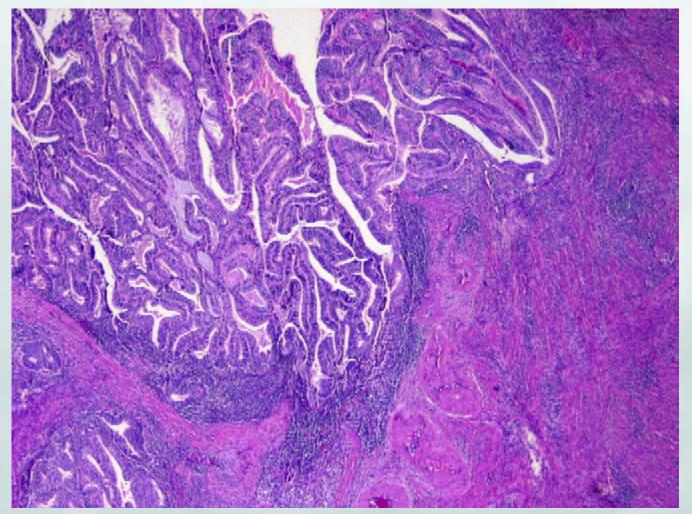
- Clinical Validity
 - MSI
 - MLH1 or MLH2
 - Sensitivity 80-91%, Specificity 90%
 - MSH6 or PMS2
 - Sensitivity 55-77%, Specificity 90%
 - IHC
 - Sensitivity 83%, Specificity 89%
 - Regardless of MMR protein
 - BRAF V600E
 - Absent in virtually 100% of Lynch syndrome individuals
 - Present in 68% of individuals without Lynch syndrome

EGAPP Working Group. Genetics in Medicine 2009; 11: 35-41.

Identification of Lynch-Related Carcinomas

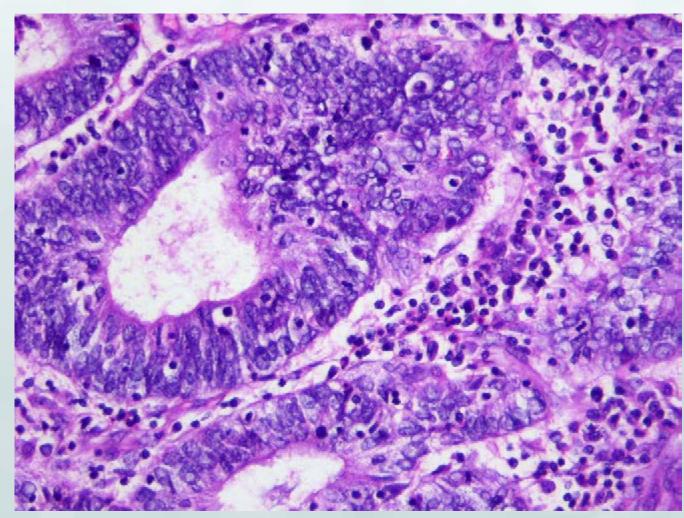
- Targeted vs. universal screening?
- Which screening strategies to implement?

Lynch Syndrome: Clinical Phenotype


- Positive family history, prior cancer history, younger age at diagnosis
 - Amsterdam Criteria (1999)
 - Bethesda Guidelines (2004)
- Tumor site
 - Endometrial carcinoma lower uterine segment (LUS)
 - In a series of 1,009 cases, 10 (29%) of the 35 (3.5%) LUS endometrial carcinomas were Lynch Syndrome associated*

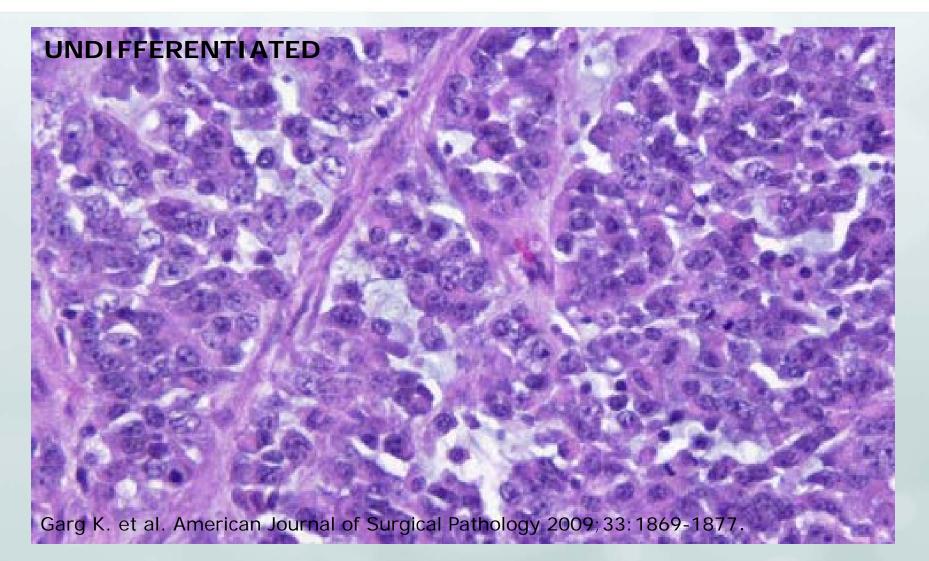
*Westin SN et al. Journal of Clinical Oncology 2008; 36: 5965-5971.

- Shia J. et al. Human Pathology 2008; 39: 116-125.
 - 102 endometrial carcinoma cases; 52 MSI-H & 50 non MSI-H
 - Host inflammatory response
 - Cytologic grade
 - Architecture
 - Invasion pattern
 - Metaplasia
 - Necrosis
 - LVI
 - Background endometrium
 - Tumor infiltrating lymphocytes (OR 3.1) and peritumoral lymphocytes (OR 2.8) only features that were significant predictors of MSI status



Shia J. et al. Human Pathology 2008; 39: 116-125.

Endometrioid FIGO 1 with peritumoral lymphocytes



Endometrioid FIGO 1 with tumor infiltrating lymphocytes

Shia J. et al. Human Pathology 2008; 39: 116-125.

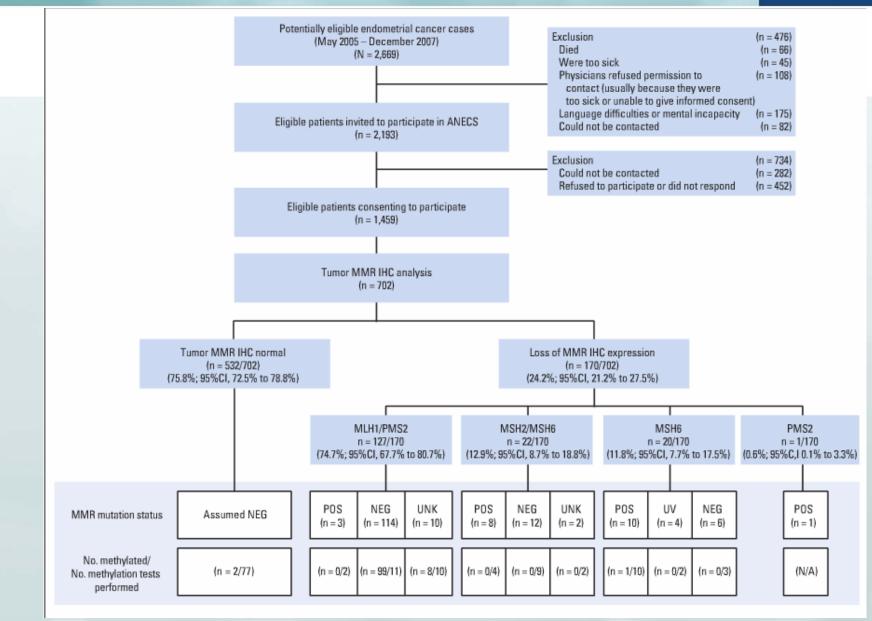
Histologic type in Lynch Syndrome associated tumors

	Broadus et al., 2006, N=50		Carcangiu et al., 2010, N=23	
	Endometrioid	Non- endometrioid	Endometrioid	Non- endometrioid
MLH1	3 (6%)	0	5 (22%)	2 (9%)
MSH2	40 (80%)	7 (14%)	7 (30%)	8 (35%)
MLH1 & MSH2	0	0	1 (4%)	0

Broaddus R. et al. Cancer 2006; 106:87-94. Carcangiu M. et al. International Journal of Surgical Pathology; 18:21-26

Recommendations for Lynch Syndrome Screening in Endometrial Carcinoma • NCCN

- Patient < 50 or meets Amsterdam or Bethesda Criteria
- Society of Gynecologist Oncologists
 - "In summary, all women who are diagnosed with endometrial cancer should undergo systematic clinical screening for Lynch syndrome (review of personal and family history) and/or molecular screening. Molecular screening of endometrial cancers for Lynch syndrome is the preferred strategy when resources are available."


Lynch syndrome Screening Strategies in Endometrial Carcinoma

- Buchanan DD et al. Journal of Clinical Oncology 2014; 32: 90-100
 - Comparison of the frequencies of MLH1, PMS2, MSH2, and MSH6 mutations in LS associated endometrial carcinoma
 - Comparison of the performance characteristics of various screening strategies
 - Validation of MLH1 promoter methylation as a negative predictive marker for Lynch syndrome

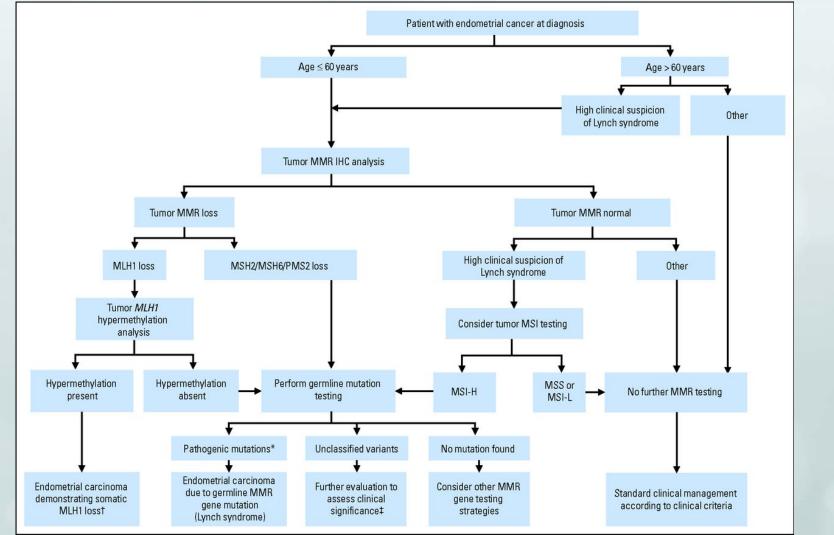
A HEALTHIER WORLD THROUGH BOLD INNOVATION

Buchanan DD et al. Journal of Clinical Oncology 2014; 32: 90-100

Lynch syndrome Screening Strategies in Endometrial Carcinoma

Performance characteristics of selected clinical criteria and tumor tests

Criteria	% Fulfilling Criteria	% of Mutation Carriers Fulfilling Criteria	Positive Predictive Value	
			%	95% CI
Amsterdam II	3.6%	14.3%	12.0	3.2-32.3
Bethesda	36.3%	76.2%	6.3	3.8-10.3
Age < 60	40.8%	85.7%	6.3	3.9-10.0
MMR IHC loss <60	10.2%	85.7%	25.4	16.1-37.3
MMR IHC loss <60 MLH1 unmethylated	5.6%	85.7%	46.2	30.4-62.6
	N=698	N=21		


**Negative predictive values ranged from 97.3-100.0%

Buchanan DD et al. Journal of Clinical Oncology 2014; 32: 90-100

A HEALTHIER WORLD THROUGH BOLD INNOVATION

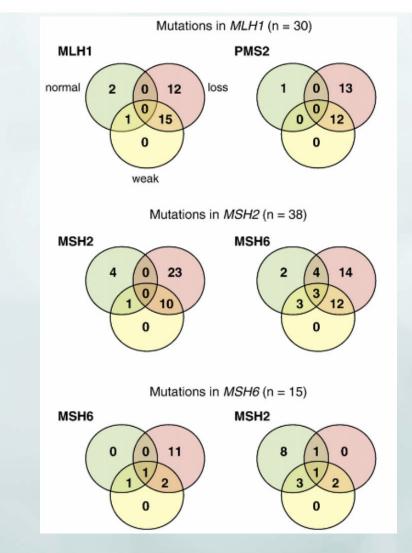
Proposed Algorithm for Endometrial Carcinoma

Buchanan DD et al. Journal of Clinical Oncology 2014; 32: 90-100

Towards a Rational, Comprehensive Approach to Genetic Screening For Lynch Syndrome and Beyond

- A well-coordinated interdisciplinary approach is essential to success
 - To address questions of informed consent
 - To ensure implementation of reporting and referral protocols that result in appropriate patient follow up
- Prospective research
 - To engage in an on-going assessment of the clinical utility and cost effectiveness of adopted testing

A HEALTHIER WORLD THROUGH BOLD INNOVATION



Lynch Syndrome Screening in Endometrial Carcinoma

QUESTIONS???

Interobserver variability in MMR immunohistochemistry interpretation in Lynch associated carcinomas.

Klarskov et al. Human Pathology 2010;41:1387-1396.