Cognitive and behavioral aspects of PD

Sarah Tomaszewski Farias, Ph.D., ABPP-CN
Associate Professor, Department of Neurology
University of California, Davis
Overview

I. Cognitive changes in PD
II. Definitions of MCI and dementia in PD
III. Coping with cognitive loss
IV. Cognition and DBS surgery
V. Case presentation
Background

- Historically, PD largely considered a motor disorder
- Cognitive changes are among the most debilitating aspects of PD
- Cognitive changes can start early in the disease
- Lead to reduced job performance and contribute to loss of functional abilities (e.g. driving, cooking safely)
- The cognitive and secondary functional consequences can also create stress for families of affected individuals
Cognitive and behavioral changes in PD directly tied to pathophysiology

- Loss of DA projections → affect cortical-subcortical pathways
- Decrease in other neurotransmitter systems (e.g. widespread cholinergic deficits)
 - In PDD correlates with degree of cognitive impairment
- Development of Lewy Bodies in cortex and limbic structures
- Structural and functional imaging show widespread injury and dysfunction associated with PDD and PD-MCI
 - Correlation with cognitive impairment
- Other neurodegenerative disease of aging
Functional cortical-subcortical loops
Cognitive Deficits found in PD

- Bradyphrenia – slowing of cognitive processes
- Attention and Executive Deficits
- Memory problems
- Visuospatial Deficits
Cognitive functions related to the Prefrontal cortex: Executive Functions

- Planning and organization
- Decision making
- Reasoning and judgment
- Problem solving
- Anticipating consequences
- Knowing when to initiate a behavior and when it is no longer needed
- Divided Attention
- Creative thinking
- Regulation of other basic abilities such as attention, perception, language, and memory
Impairments in executive functions

- Problems with ‘mental flexibility’
 - No longer able to ‘multi-task’
 - Easily distracted by other things in the environment
 - Becoming overwhelmed by new or chaotic circumstances
 - Only seeking something ‘one way’
 - Getting stuck on certain ideas
- Disorganization and poor planning
 - Problems keeping up with finances (loosing important documents)
 - Problems keeping track of one’s schedule (e.g. missing appointments)
 - Difficulty prioritizing and sequencing tasks
- Poor judgment and problem solving
 - Not weighing the consequences
 - Making bad decisions at work, poor financial decisions
Other cognitive problems related to frontal-subcortical dysfunction

- Processing speed reductions
 - It takes longer to do tasks
 - Tasks are more mentally draining than they used to be
- Problems with apathy
 - Difficulty “getting started”
 - Difficulty following through with tasks
 - Watching TV for long periods of time
 - Not keeping up with hygiene
 - Does not = laziness
Language/Communication

• Word finding difficulty
• Increased slowness in responding during conversation due to difficulty organizing thoughts
• Difficulty tracking conversations
• Reduced spontaneous initiation of conversation
Memory

• 67% of pts with PD dementia have reported memory complaints (compared to 97% AD)
• A problem with retrieval rather than storage/consolidation
 • Relative preservation in ‘retention’ (e.g. improved recall with cues or recognition)
• Overall less severe than in AD
Spatial abilities

• Constructional/drawing tasks
• Difficulties with geographic orientation
• Getting lost while driving
• Difficulties with visual tracking and visual attention
The spectrum of cognitive function in PD

- Ranges from normal to severely impaired
- Generally correlated with disease severity but considerable variability
- Even newly diagnosed, untreated patients can exhibit subtle cognitive difficulties
- Ultimately, it is believed that essentially all individuals with PD will develop a dementia
 - Two prospective, long-term cohort studies found at least 80% of PD pts developed dementia
The concept of MCI in PD

- Mild Cognitive Impairment (MCI) originally identified in the context of prodromal AD
- Recent formalized criteria for PD-MCI: (Litvan et al., 2012)
 1. Inclusion criteria
 - Diagnosis of PD
 - Gradual cog decline in the context of PD reported by either pt, informant, or observed by the clinician
 - Cognitive deficits on either formal neuropsychological testing or global cognitive screen
 - Cognitive deficits not sufficient to result in loss of independence, although subtle difficulties on complex functional tasks may be ok
PD-MCI

- Point prevalence 20-30%
- Associated with increased risk of PD Dementia
 - 17-30% progressed to dementia over 5 year period
- Predictors of conversion: older age, non-tremor predominant phenotype, worse motor sxs on UPDRS
Subtypes of MCI in PD

• Four typically defined ‘MCI’ subtypes: single and multiple non-amnestic, single and multiple domain amnestic
• Single domain more common
• Non-amnestic more common
• Cognitive phenotype in PD are heterogeneous
 • Attention/executive may be most common
 • Posterior-cortical type profile common
 • Amnestic profile also possible
• Prognosis:
 • ?Posterior cortical impairment vs executive phenotype
Dementia in PD

• Point prevalence ~30%
• Time from PD dx to dementia average = 10 yrs (wide variability from 3-5 years to 20-30 years)
• Consensus dx criteria for Probable PDD: (Emre et al., Mov Disord, 2007)

Core Features:
1. Diagnosis of PD (motor symptoms clearly proceed dementia*)
2. Dementia syndrome with insidious onset and slow progression
 • Impairment in more than 1 cognitive domain (typical domains: impaired attention, impaired exec fx, visuospatial fx, and impaired memory recall which usually improves with cueing)
 • Represents a decline from premorbid level
 • Deficits severe enough to impair independent fx
• Extended criteria for probable vs possible PDD based on presences of associated neuropsychiatric features, typicality of cognitive profile, etc.

* When dx of dementia precedes or coincides with motor sxs → more likely Dementia with Lewy Bodies
Coping with cognitive loss: Compensatory strategies

• Use ‘external aids’
 • Use a daily ‘To Do’ list (helps to ‘getting going’ and what order to tackle things)
 • Break big jobs into little steps
 • Use a calendar (place in highly visible location)
 • Use alarms and reminders on smart phones
 • Keep a routine schedule

• Minimize distractions
 • Do only one thing at a time (limit radio and/or talking while driving, limit conversations and other distractions while cooking)
 • Work in a quiet location
 • One question at a time! (minimize stimulus overload!)

• Allow for extra time
Activities associated with improving or maintaining brain health

- Remain mentally engaged
 - Currently unknown which activities or ‘games’ are best
 - Active ingredients: learning new skills, moderately challenging
- Remain as physically active as possible
 - Many studies demonstrate benefits of physical exercise to brain structure and function
 - Consider physical activities that have a strong cognitive component (e.g. adapted tango class improved spatial cognition in PD, as well as executive function and balance)
- Remain socially engaged
 - Cognitive stimulation
 - Emotional support
All candidates for DBS undergo neuropsychological evaluation

Goal: to minimize risk of significant cognitive (and hence functional) decline after surgery

- Greater cognitive impairment → greater risk of decline

Few ‘absolute’ cognitive/behavioral contraindications

- Moderate to severe dementia
- Uncontrolled and severe psychiatric sxs

Each case reviewed individually in the context of the patient’s history
Potential cognitive changes after surgery

- Usually mild
- Most common: verbal fluency (e.g., rapid, fluent verbal output)
- Recent Meta-Analysis (Perestelo-Perez, J Neurology, 2013)
 - Global cognitive scales generally show subtle worse function than medication-only control group
 - No differences across DBS vs medication control in memory or spatial abilities
 - Mood generally improved
- Improvement in motor functions can ‘unmask’ cognitive deficits
- Psychiatric sx can worsen, in part secondary to surgery not meeting pt’s expectations
 - Critical to be clear about what sx the DBS will and will NOT help to improve
Case Presentations: Case 1

- Female, early 70’s
- Hx of PD for approximately 10+ years
- PD sx: Tremor predominant (L>R)
- Education: 16 years
- Primary occupation: teacher
Case 1

<table>
<thead>
<tr>
<th>Cognitive domain</th>
<th>Pre-DBS</th>
<th>Post-DBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention (digit span)</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>Processing Speed (Trails A)</td>
<td>86</td>
<td>94</td>
</tr>
<tr>
<td>Story Learning</td>
<td>115</td>
<td>110</td>
</tr>
<tr>
<td>Story Recall</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Verbal fluency (semantic)</td>
<td>104</td>
<td>106</td>
</tr>
<tr>
<td>Verbal fluency (phonemic)</td>
<td>94</td>
<td>106</td>
</tr>
<tr>
<td>Visuospatial fx</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Executive (Trails B)</td>
<td>89</td>
<td>86</td>
</tr>
</tbody>
</table>

Standard scores mean = 100, SD = 15
- ≥110 = above average
- 90-109 = average
- <89 = below average
Case 2

- Mid-60 year-old female
- Hx of PD for about 10 years
- Hx of hallucinations with DA agonist
- PD sx at time of surgery: rigidity, falls, tremor, dyskinesias
- Education: 12 years
- Primary occupation: clerical
Case 2

<table>
<thead>
<tr>
<th>Cognitive domain</th>
<th>Pre-DBS</th>
<th>Post-DBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention (digit span)</td>
<td>90</td>
<td>85</td>
</tr>
<tr>
<td>Processing Speed (Trails A)</td>
<td>91</td>
<td>99</td>
</tr>
<tr>
<td>Story Learning</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Story Recall</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>Verbal fluency (semantic)</td>
<td>116</td>
<td>94</td>
</tr>
<tr>
<td>Verbal fluency (phonemic)</td>
<td>94</td>
<td>84</td>
</tr>
<tr>
<td>Visuospatial fx</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Executive (Trails B)</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Mood (BDI-II – Raw score)</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

Standard scores mean = 100, SD = 15

$\geq 110 = \text{above average}$

90-109 = average

$< 89 = \text{below average}$
Case 3:

- Mid 60’s at time of surgery
- Education: master’s degree
- Occupation: High level management/professional
- Hx of PD for almost 10 years
- Primary sxs at time of surgery: tremor predominant
Case 3:

- Some transient confusion after surgery
- Once returning to work noticed some increased difficulty, after attempting some accommodations at work decided to retire

<table>
<thead>
<tr>
<th>Cognitive domain</th>
<th>Pre-DBS</th>
<th>Post-DBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention (digit span)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Processing Speed (Trails A)</td>
<td>91</td>
<td>86</td>
</tr>
<tr>
<td>Story Learning</td>
<td>110</td>
<td>90</td>
</tr>
<tr>
<td>Story Recall</td>
<td>105</td>
<td>115</td>
</tr>
<tr>
<td>Verbal fluency (semantic)</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>Verbal fluency (phonemic)</td>
<td>88</td>
<td>84</td>
</tr>
<tr>
<td>Executive (Trails B)</td>
<td>94</td>
<td>67</td>
</tr>
<tr>
<td>Mood (BDI-II raw score)</td>
<td>17</td>
<td>14</td>
</tr>
</tbody>
</table>

Standard scores mean = 100, SD = 15

- ≥110 = above average
- 90-109 = average
- ≤89 = below average