Impaired Visuospatial Processing in Young Adult Male Fragile X Premutation Carriers

Ling M. Wong, Naomi J. Goodrich-Hunsaker, Yingratana (Bella) McLennan, Flora Tassone, Danielle Harvey, Susan M. Rivera, Tony J. Simon

Cognitive Analysis and Brain Imaging Lab
http://cabil.mindinstitute.org
lmewong@ucdavis.edu

Funding: NIDCF UL1 DE019583, NIA RL1 AG032119, NINDS RL1 NS062412, NIDA TL1 DA024854.
What is visuospatial processing?

- Adult fXPCs exhibit intact function in pathways involved in color and object recognition
- Impaired function in pathways involved in motion perception, detection of spatial location, and visuomotor coordination (Kéri & Benedek 2009, 2010, 2012)
- Adult male fXPCs have intact perception, but impaired visuospatial performance (Hocking et al, 2012)
- Where in the processing stream is the root of impairment?
Aims of the Current Study

- **Aim 1**: Investigate whether adult male fXPCs asymptomatic for FXTAS exhibit impaired visuospatial functioning or visuospatial attention
 - Results might provide a basis for a biomarker for later neurodegeneration

- **Aim 2**: Examine whether genetic “dosage” (e.g. CGG repeat length, gender) modulates behavior
 - Compare male and female performance

- **Aim 3**: Examine whether performance declines w/age
Study Design

- Participants included 48 adults (aged 18 - 45)
 - 21 male fXPCs
 - 27 HCs

- 5 Behavioral tasks
 - Psychomotor speed (manual and oral)
 - Magnitude Comparison (distance effect)
 - Enumeration (numerical spatial attention)
 - Spatial cuing
Psychomotor Speed Task

“Press the button as soon as you see the alien”

- HCs replicate published population values, as do male fXPCs

- Adult male fXPCs, unlike females show similar psychomotor speed compared to HCs

Magnitude Comparison Task

“Which of the two blue bars is longer?”

- Male fXPCs are slower
- Performance relates to CGG
Enumeration Verbal Task

“How many green items do you see in the red square?”

- Male fXPCs are slower in counting

Median RT / Oral Motor RT ± S.E.

Percent Error ± S.E.

Numerosity

1 2 3 4 5 6 7 8

Subitizing Range

(< 100 ms / item)

Counting Range

(> 250 ms / item)

Age (in yrs)

20 25 30 35 40

CGG Repeats

50 100 150 200

Subitizing Range

(< 100 ms / item)

Counting Range

(> 250 ms / item)

RT (in ms)

500 1000 1500

Number of Items

1 2 3 4 5 6 7 8

Expected Performance

Spatial Cuing

"Use the clues to find the target"

Male fXPCs perform similarly to HCs

HC (n = 17)

fXPC (n = 16)

Cue effect

r = .05

r_{HC} = -.31

r_{fXPC} = -.01
Summary of Results

- Adult male fXPCs do not show enhanced psychomotor speed, unlike female fXPCs.
- Adult male fXPCs are slower in magnitude comparison and numerical spatial attention.
- Magnitude comparison performance worsens with increased CGG.
- Results suggest visuospatial processing is impacted in fXPCs, but attentional orienting is not affected.
Implications & Future Plans

- Results support previous findings of impaired performance in visuospatial tasks in fXPCs.
- They add to a growing body of literature characterizing the phenotypic spectrum produced by $FMR1$ gene dosage.
- Lack of robust effects or associations may be due to limited age and CGG sampling range. (c.f. Hocking et al, 2012 and Cornish et al, 2011)
- Data from fXPC boys will help determine whether performance progressively declines or remains stable.
Thank you

Thanks to all those who participated in our study!

Contact:
lmewong@ucdavis.edu

CABIL Lab members:
- Tony J. Simon
- Naomi Goodrich-Hunsaker
- Bella McLennan

Thanks to:
- Susan M. Rivera
- Flora Tassone
- Danielle Harvey
- Paul Hagerman
- Randi Hagerman
- Robert Berman

Funding: NIDCF UL1 DE019583, NIA RL1 AG032119, NINDS RL1 NS062412, NIDA TL1 DA024854.