This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
Letter to the Editor

A second look: No effect of the COMT Val158Met polymorphism on conflict adaptation in youth with chromosome 22q11.2 deletion syndrome

Dear Editors,

1. Introduction

The catechol o-methyltransferase gene (COMT) gene is located at chromosome 22q11.2, where the most common human genetic microdeletion occurs. The resultant syndrome (22q11.2DS) confers both a high risk of psychotic disorder (~25 fold) and schizophrenia-related executive dysfunction (e.g. Murphy et al., 1999). Therefore, 22q11.2DS has been a model population in which to study COMT behavioral phenotypes, specifically executive function and clinical psychosis (e.g. Tunbridge et al., 2004). However, in 22q11.2DS, neither allele of the codominant, functional COMT Val108/158Met polymorphism (rs4680) has been reliably associated with clinical psychosis (Murphy et al., 1999; Gothelf et al., 2005; Bassett et al., 2007; Boot et al., 2011) or executive function (Bearden et al., 2004; Glaser et al., 2006; Shashi et al., 2010). We have previously reported an association between the rs4680 Met allele and conflict adaptation (Takarae et al., 2009) but not to flanker interference (Stoddard et al., 2011) within the same task. To resolve this discrepancy, we re-examined the association between rs4680 and impairment in conflict adaptation in the larger sample (Stoddard et al., 2011) using the same method as before (Takarae et al., 2009).

2. Methods

We tested 53 participants with 22q11.2DS, 49 of whom participated in a prior study (Stoddard et al., 2011) and 27 of whom participated in our previous report (Takarae et al., 2009). We used the same selection criteria and tasks as described in that report. All youth were aged 6–15 years, and were tested with an Attention Networks Test, which includes a flanker task. Typically developing youth (TD; n = 34) served as

Table 1

<table>
<thead>
<tr>
<th>Reaction time and accuracy by trial type.</th>
<th>22q11.2 DS</th>
<th>TD</th>
<th>Comparisona</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMT Met N = 31</td>
<td>COMT Val N = 22</td>
<td>N = 34</td>
</tr>
<tr>
<td>Reaction time (ms)b</td>
<td>802 (220)</td>
<td>872 (199)</td>
<td>778 (224)</td>
</tr>
<tr>
<td>Congruence</td>
<td>830 (195)</td>
<td>901 (207)</td>
<td>791 (324)</td>
</tr>
<tr>
<td>CC</td>
<td>796 (194)</td>
<td>811 (202)</td>
<td>772 (246)</td>
</tr>
<tr>
<td>CCC</td>
<td>927 (264)</td>
<td>1008 (251)</td>
<td>887 (232)</td>
</tr>
<tr>
<td>Interference</td>
<td>989 (315)</td>
<td>1038 (320)</td>
<td>821 (211)</td>
</tr>
<tr>
<td>CI</td>
<td>880 (396)</td>
<td>1038 (490)</td>
<td>825 (258)</td>
</tr>
<tr>
<td>II</td>
<td>0 (7)</td>
<td>0 (7)</td>
<td>0 (7)</td>
</tr>
<tr>
<td>III</td>
<td>0 (8)</td>
<td>0 (9)</td>
<td>0 (8)</td>
</tr>
<tr>
<td>Error ratec (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Congruence</td>
<td>0 (7)</td>
<td>0 (8)</td>
<td>0 (9)</td>
</tr>
<tr>
<td>CI</td>
<td>0 (17)</td>
<td>0 (8)</td>
<td>0 (7)</td>
</tr>
<tr>
<td>II</td>
<td>0 (17)</td>
<td>0 (8)</td>
<td>0 (8)</td>
</tr>
<tr>
<td>III</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Group: Flanker: F = 2.56, p = 0.083</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Group mean for median reaction times for a trial type (ms).
b Trial types are noted as follows: IC refers to a congruent trial preceded by incongruent trial; CC, a congruent trial preceded by single congruent trial; CCC, a congruent trial preceded by two successive congruent trials; CI, an incongruent trial preceded by congruent trial; II, an incongruent trial preceded by single incongruent trial; III, an incongruent trial preceded by two successive incongruent trials.
c Group median and IQR of raw error rates by trial type, error rate was transformed by taking their square root to improve normality for ANCOVA analysis.
d Compared with repeated measures flanker-sequence (abbreviated ‘flanker’) by group ANCOVA with age as a covariate. Degrees of freedom were corrected by the Huynh–Feldt method for violations of the sphericity assumption.

a positive control group. Of those with 22q11.2DS, 31 had the rs4680 Met allele and 22 the Val allele. Groups did not differ by age or sex.

We compared adaptation to flanker interference by studying prior trial effects on current trial performance using the same analytic method as before, but current data processing used a MatLab v. 7.10 script rather than a Microsoft Excel 2004 macro. In addition, trial condition mean and variance were used for trial exclusion rather than grand mean and variance. We replicated the prior analysis with these changes with no differences in results (data not shown). Significance tests were by repeated measures ANCOVA with polynomial tests for flanker sequence contrasts. Age was included as a covariate because of its significant effect. Degrees of freedom were corrected by the Huynh–Feldt method for violations of the sphericity assumption.

3. Results

Results are presented in Table 1, where only the previously reported (Stoddard et al., 2011) overall effects of flanker interference were significant. Within each group, none of the flanker sequence effects on reaction time or error were significant when modeled as linear or quadratic trends. When considering the 22q11.2DS groups only, we did not find that the COMT SNP significantly affected overall performance (F = 0.268, p = 0.607 for RT; F = 0.247, p = 0.621 for error rate) or interacted with adaptation to flanker interference (F = 1.24, p = 0.288 for RT; F = 0.179, p = 0.817 for error rate).

4. Discussion

By increasing our sample size we found no differences in conflict adaptation between either allele of rs4680 in youth with 22q11.2DS. Post hoc power analysis suggests that future studies will require larger samples. Until that occurs, we propose that great caution should be taken when considering the role of the COMT SNP rs4680 in cognitive control and psychiatric outcomes in those with 22q11.2DS.

References


Tunbridge, E., Burnet, P.W., Sodhi, M.S., Harrison, P.J., 2004. Catechol-O-methyltransferase (COMT) and proline dehydrogenase (PRODH) mRNAs in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Synapse 51 (2), 112–118.

Joel Stoddard
Mood and Anxiety Disorders Branch,
National Institute of Mental Health, United States
Department of Psychiatry and Behavioral Sciences,
Medical Investigation of Neurodevelopmental Disorders (MIND) Institute,
University of California at Davis Health System, United States
Corresponding author at: Building 10, B1D43B2, Bethesda, MD 20892,
United States. Tel.: +1 916 317 3262.
E-mail address: joel.stoddard@nih.gov.

Yukari Takaragi
Center for Mind and Brain,
University of California at Davis, United States

Tony J. Simon
Department of Psychiatry and Behavioral Sciences,
Medical Investigation of Neurodevelopmental Disorders (MIND) Institute,
University of California at Davis Health System, United States

30 August 2011