Pathogen and antimicrobial resistance surveillance in Ugandan HIV positive adults with pneumonia

Joshua Bloomstein¹, Saharai Caldera², Lawrence Huang², William Worodria³, Patrick Byanyima³, Emmanuel Musisi³, Sylvia Kaswabuli³, Josephine Zawedde³, Julia Moore², Susan Lynch², Meera Shenoy², Chaz Langelier²

¹School of Medicine, University of California, Davis ²Department of Medicine, University of California, San Francisco ³Department of Internal Medicine, Makarere University, Kampala, Uganda

University of California San Francisco

Contact: jbloomstein@ucdavis.edu

• Lower respiratory tract infections are the top cause of infectious disease-related • RNA-seq from tracheal aspirates of 217 HIV+ pneumonia patients in

- deaths in the world.
- The causative pathogen is detectable in only 38% of adults with community lacksquareacquired pneumonia.
- Time to diagnosis of pathogen is directly correctly with mortality. \bullet
- The widespread use of broad-spectrum empiric treatment contributes to the \bullet proliferation of antimicrobial resistance.
- Next Generation Sequencing could offer potential for early identification. \bullet

- Kampala, Uganda.
- Rules-Based Method identification of contributory pathogens using \bullet microbial abundance.
- Identified polymicrobial infections and assessed levels of opportunistic pathogens.
- Compared virus abundance between patients with CD4 counts > 200 versus < 200.
- Compared Pneumocystis jiroveci RNA-seq abundance (NT_r) to bronchioalveolar lavage (BAL) Giemsa stain.

Results

- 22.5

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

Mycobacterium Reads

BAL Giemsa

Positive

CD4 count

34

NT_r

3,647,678

Differentially Abundant Viruses in CD4 > 200 versus < 200

with spe

patients

10

Threshold for active *Mycobacterium tuberculosis*

Selected	Patient Adju	dications	

	Pathogen 1	Pathogen 2	Pathogen 3	Pathogen 4
Patient 1153	Rhinovirus C	Mycobacterium tuberculosis	Pseudomonas aeruginosa	Haemophilus influenzae
Patient 1342	Human coronavirus HKU1	Streptococcus pneumoniae		
Patient 1714	Toxoplasma gondii			

Conclusions

Apparent high number of Pseudomonas aeruginosa cases, an etiology not lacksquarecovered by the current ceftriaxone empiric treatment.

RNA-seq identified 2 patients with high abundance of *Pneumocystis* \bullet jiroveci that had negative Giemsa stain.

1. Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc Natl Acad Sci U S A. 2018;115(52):E12353-E12362.

References

2. World Health Organization (2017) The top 10 causes of death. Available at www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed October, 1, 2018.