Effect of miR-454 on LRIG1 Expression in Breast Cancer Cells

Munoz, Meilen C.1, Amir, Sumaira2, Sweeney, Colleen 1,2

1 University of California Davis, School of Medicine and 2 University of California Davis Cancer Center, University of California at Davis, Sacramento, CA

ABSTRACT

Introduction: Micro RNAs (miRNAs) are regulatory RNAs that have been implicated in many human diseases. Namely, miR-454 has been demonstrated to contribute to tumorigenesis and is known to be elevated in human tumor cells. In this study, we examined the regulatory control of miR-454 on a breast cancer tumor suppressor LRIG1.

Methods: To determine the effect of miR-454 on LRIG1 expression, cells were transfected with miR-454 mimic or an antagomiR, and LRIG1 levels were subsequently assessed. A luciferase reporter assay was used to determine if miR-454 bound directly to the LRIG1 3’UTR.

Results: LRIG1 expression levels were elevated in MCF-7 cells expressing antagomiR-454. MCF-7 and MDA-MB-231 cells expressing exogenous LRIG1 3’UTR and miR-454 had greater luciferase activity compared to cells expressing 3’UTR control and miRNA. Exogenous expression of LRIG1 3’UTR and LRIG1 3'UTR and miR-454 cells did not result in MDA-MB-231 cells, resulting in decreased luciferase activity relative to control cells.

Discussion: In MCF-7 cells, an ER/PR/HER2 breast cancer cell line, expression of antagomiR-454 led to increased expression of LRIG1, suggesting that miR-454 may be involved in suppressing LRIG1 expression. The results of the luciferase reporter assay were inconclusive, future studies have to be done to determine whether miR-454 regulates LRIG1 expression directly, or indirectly by modulating regulators of LRIG1.

INTRODUCTION

Micro RNAs (miRNAs) are a class of regulatory RNAs in animals, plants, and viruses that play important roles in a variety of biological processes including development, cellular differentiation and proliferation, and apoptosis. To perform their regulatory function, miRNAs combine with Argonaute family proteins into miRNA-induced沉默复合体。These complexes bind to fully or partially complementary miRNA targets, typically the 3’UTR, to silence their activity. Alternatively, regulatory mechanisms identified, including repression of transcription initiation and elongation. Given the role of miRNAs in gene expression regulation, hundreds of miRNAs have already been implicated in human diseases, including metabolic disorders and cancer. miRNA expression profiles have identified specific miRNAs that are overexpressed or underexpressed in disease states. Specifically, miR-454 was found to be upregulated in the ER/PR+ HER2 breast cancer cell line, and was demonstrated to contribute to tumorigenesis, presumably by downregulating tumor suppressor gene expression. LRIG1 is a transmembrane protein that interacts with several receptor tyrosine kinases, including those belonging to the EGFR, MET, and RET families. Recent studies have demonstrated that LRIG1 is a negative regulator of the Met receptor and it suppresses the synergy between Met and epidermal growth factor receptor (EGFR). LRIG1 downregulation has been observed in Her2-induced murine mammary tumors and in many human breast cancer cell lines. It has been hypothesized that LRIG1 expression is regulated by miR-454 in several breast cancer cell lines. Our preliminary analysis of data from The Cancer Genome Atlas demonstrated that increased miR-454 levels correlated with a reduction in LRIG1 expression in human tumor cells. Other early studies also suggested that LRIG1 is a breast cancer tumor suppressor gene. To further characterize the role of miR-454 on LRIG1 regulation in breast cancer cells, we aim to expand our analysis to various breast cancer cell lines. Further, given the high degree of sequence complementation between miR-454 and the LRIG1 3’UTR, it was determined if these two molecules could potentially mediate LRIG1 regulation.

RATIONAL

METHODS

To assess endogenous LRIG1 and miR454 levels, MCF-10A, MDA-MB-231, MCF-7, ZR75-1, BT-20, and MDA-MB-468 cells were grown to 90% confluence on 10cm tissue culture plates. Cells were lysed using a lysis buffer and the whole cell lysates were probed for LRIG1 using Western blotting. To assess the effect of miR-454 on LRIG1 expression, MDA-MB-231, MCF-7, and ZR75-1 cells were transfected with miR-454 mimic or scramble control miRNA-454 LRIG1 expression vector or empty control vector. Cell lysates were analyzed using whole cell lysates. The whole cell lysates were probed for LRIG1 using Western blotting. To determine if there was a direct interaction between the LRIG1 3’UTR and miR-454, a luciferase reporter assay was done in which the 3’UTR of LRIG1 was inserted downstream of the luciferase gene. MCF-7, MDA-MB-231, and ZR75-1 cells were then transfected with this construct +/- miR-454 or its antagonist and luciferase activity was measured.

RESULTS

Figure 1. Enogenous LRIG1 expression in various breast cancer cell lines. Whole cell lysates from MCF-10A, MDA-MB-231, MCF-7, ZR75-1, BT-20, and MDA-MB-468 were used to measure LRIG1 expression levels via Western blotting. BT-20 and MDA-MB-468 cells demonstrated lower levels of endogenous LRIG1 expression, while MDA-MB-231, MCF-7, and ZR75-1 cells had moderate levels.

Figure 2. LRIG1 expression is higher in MCF-7 cells expressing antagomiR-454, MDA-MB-231, MCF-7, and ZR75-1 cells were transfected with LRIG1 expression vector +/- control miRNA, miR-454 mimic, or antagomiR-454. LRIG1 expression in cells transfected with miR-454 mimic was significantly higher than expression in control cells. However, in MCF-7 cells expressing antagomiR-454, LRIG1 expression was markedly elevated, suggesting that the depletion of endogenous miR-454 levels correlated with an increase in LRIG1 expression. The increase in LRIG1 and ZR75-1 cells did not demonstrate any detectable changes in LRIG1 expression following any of the miRNA treatments.

Figure 3. miR-454 interaction with the LRIG1 3’UTR. MCF-7, MDA-MB-231, and ZR75-1 cells were transfected with the LRIG1 3’UTR-luciferase gene construct +/- miR-454 or to antagomiR and luciferase activity was measured. There was an increase in luciferase activity in MCF-7 cells transfected with miR-454, in cells expressing the antagomiR, luciferase activity was reduced below control levels. Luciferase activity in MDA-MB-231 and ZR75-1 cells did not follow a similar pattern. Thus, these results are inconclusive and do not clearly demonstrate the direct interaction between miR-454 and LRIG1.

DISCUSSION

Abnormal expression of miRNA has been observed in human diseases, including breast cancer. Several studies have identified that target tumor suppressor genes to promote tumor growth and proliferation. In this study, we aimed to determine if miR-454 targeted the tumor suppressor LRIG1 in various breast cancer cell lines. We first assessed endogenous LRIG1 expression levels in MCF-10A, MDA-MB-231, MCF-7, ZR75-1, BT-20, and MDA-MB-468. Given that MDA-MB-231, MCF-7, and ZR75-1 cells exhibited moderate LRIG1 expression, we used these cell lines to assess the effect of miR-454 on LRIG1 expression. MCF-7 cells transfected with antagomiR-454 showed increased levels of LRIG1 relative to control cells, indicating that LRIG1 expression is not detectably alter after LRIG1 expression in MDA-MB-231 or ZR75-1 cells. This data suggests that reducing miR-454 levels rescues the expression of the tumor suppressor LRIG1 in breast cancer cells. To determine if miR-454 has a direct interaction with the 3’UTR of LRIG1 to regulate its expression, we conducted a luciferase reporter assay. MDA-MB-231, MCF-7, and ZR75-1 cells were transfected with miR-454 mimic, antagomiR-454, or control miR-454 in a 3’UTR or control 3’UTR. The results of this experiment were inconclusive and further studies have to be done to demonstrate whether miR-454 regulates LRIG1 expression directly or indirectly by modulating other regulators of LRIG1. While this data is preliminary, taken together, it suggests that miR-454 regulates the expression of the LRIG1 3’UTR in breast cancer cell lines. MDA-MB-231 is a triple negative breast cancer cell line, while MCF-7 is an ER/PR+/HER2 breast cancer cell line. In contrast to both of these cell lines, ZR75-1 is an ER/PR+/HER2 breast cancer cell line, which could offer an explanation as to why miR-454 did not affect LRIG1 levels in these cells. LRIG1 is known to suppress the synergy between Her2 and Met. Herein, we can speculate that in HER2+ cells, LRIG1 is already substantially downregulated to promote HER2 synergy. Further studies need to be done to better characterize the role of miR-454 on LRIG1 expression regulation, and assess the importance of miR-454 in the progression of specific breast cancer types.

REFERENCES


ACKNOWLEDGEMENTS

Thank you to the Student Research Fellowship for funding this research.