

Mesenchymal Stem Cells Engineered to Produce Brain-Derived Neurotrophic Factor as a Potential Treatment for Huntington's Disease

Vicki Wheelock, MD Director, HDSA Center of Excellence at UC Davis HDSA National Convention Dallas, TX - June 27, 2015

Overview

- Stem cells and genetic engineering
- Preclinical studies in transgenic HD mouse models in support of our proposed trial
- Manufacturing of MSC/BDNF in readiness for regulatory approval for a first-in-human Phase I trial
- PRE-CELL: lead-in observational study
- HD-CELL: Proposed Phase I open-label safety and tolerability trial

Abbreviations used in this talk

- MSC = mesenchymal stem cells
- BDNF = brain-derived neurotrophic factor
- MSC/BDN = MSCs engineered to express BDNF
- YAC128, R6/2= mouse models of HD used for research
- FDA = US Food and Drug Administration
- IND = Investigational New Drug license
- DSMB = Data and Safety Monitoring Board
- PRE-CELL = A pre-cellular therapy observational study in early-stage HD
- HOPE = what we need!

August 9, 2001

Crawford, Texas

President Bush's prime-time address to announce federal restrictions on embryonic stem cell research

Federal funding was restricted to 60 embryonic stem cell lines (only approx. 20 were suitable for research)

California - November 2, 2004

Proposition 71 was passed as a ballot initiative

Official Results

Yes votes: 7,018,059 [51.9%] **No votes:** 4,867,090 [40.9%]

- Prop 71 authorized the sale of \$3 billion of state bonds to create the California Institute for Regenerative Medicine (CIRM)
- CIRM's mission is to finance stem cell research through the construction of research facilities and the funding of research
- CIRM is the largest source of funding for embryonic and pluripotent stem cell research in the world.

MSC/BDNF for HD

A HEALTHIER WORLD THROUGH BOLD INNOVATION

UCDAVIS HEALTH SYSTEM

INSTITUTE FOR REGENERATIVE CURES

CALIFORNIA INSTITUTE FOR REGENERATIVE MEDICINE

The State Stem Cell Agency

2010 – CIRM Spotlight on HD

How patient advocates changed the course of science

A group of families impacted by Huntington's disease inspired a "Eureka!" moment for Jan Nolta, UC Davis' pioneering stem cell researcher

Types of Stem Cells

Adult Stem Cells	Pluripotent Cells
Blood forming (hematopoietic)	Embryonic
Mesenchymal (supporting cells)	Induced pluripotent stem cells

MSC/BDNF for HD

MSCs can be engineered to secrete copious amounts of factors for delivery to other cells and tissues in the body

Nolta Lab, 1987-present Book published - 2006

A HEALTHIER WORLD THROUGH BOLD INNOVATION

MSC/BDNF for HD

Mol Neurobiol (2012) 45:87–98 DOI 10.1007/s12035-011-8219-8

Molecular Neurobiology

Editor-in-Chief: Nicolas G. Bazan

ISSN: 0893-7648 (print version) ISSN: 1559-1182 (electronic version)

Journal no. 12035

Humana Press

Genetically Engineered Mesenchymal Stem Cells as a Proposed Therapeutic for Huntington's Disease

Scott D. Olson • Kari Pollock • Amal Kambal • Whitney Cary • Gaela-Marie Mitchell • Jeremy Tempkin • Heather Stewart • Jeannine McGee • Gerhard Bauer • Hyun Sook Kim • Teresa Tempkin • Vicki Wheelock • Geralyn Annett • Gary Dunbar • Jan A. Nolta

BDNF: a lead candidate for HD treatment

 Survival and function of striatal neurons is dependent on brainderived neurotrophic factor (BDNF).

•Mutant huntingtin protein blocks production of BDNF at the RNA level and reduces axonal transport from the cortical cells to the striatum. Levels of this trophic factor are significantly reduced in the brains of HD patients.

Dey et al showed that MSCs engineered to over-express BDNF slowed the progression of HD in a transgenic mouse model.

 BDNF delivery triggers the recruitment of new neurons in HD transgenic mouse model.

> C. Zuccato, M. Valenza, E. Cattaneo, *Physiol Rev* 2010;90:, 905 Dey ND et al. *Behav Brain Res* 2010;193-2000 Benraiss A. *Cell Stem Cell* 2013;787-799

MSCs: our candidate for delivery of BDNF

- MSCs secrete neurotrophic factors, reduce inflammation, reduce programmed cell death, enhance connections between neurons and reduce cell toxicity
- MSCs can be readily engineered using viral vectors to robustly deliver growth factors
- Vectors do not integrate into host cells
- MSCs do not require immunosuppression
- Unlike embryonic or pluripotent stem cells, MSCs have a strong safety profile in clinical trials
- 43 published, peer reviewed proof of concept studies have demonstrated efficacy for MSC, BDNF, or MSC/BDNF in HD mouse models (*Reviewed in Deng et al, in press 2015*)

July 26, 2012 MSC/BDNF grant is approved by CIRM!

Mesenchymal Stem Cells Engineered to produce BDNF as a treatment for HD CIRM Grant DR2A-05415

Objectives:

- To obtain FDA approval and to successfully complete a 2-year Phase I trial of cellular therapy in patients with early-stage Huntington's disease (HD).
- Our cell/gene therapy development candidate is safety modified donor-derived human mesenchymal stem cells engineered to secrete brain-derived neurotrophic factor (MSC/BDNF), as a neuroprotective strategy to rescue brain cells that are degenerating in patients with Huntington's disease.

Project Plan: MSC/BDNF for HD CIRM Grant DR2A-05415

PRE-CELL: Years 1&2 HD-CELL: Years 3&4

A HEALTHIER WORLD THROUGH BOLD INNOVATION

MSC/BDNF for HD

MSCs divide to make more cells. We expand them to larger numbers following Standard Operating Procedures and add extra DNA to make BDNF.

BDNF production by the engineered MSCs

BDNF Production: Human MSCs were transduced with the lentiviral vector pCCLc-MNDU3-BDNF-WPRE at the indicated Multiplicity of infection (MOI). Increasing the MOI increases the amount of BDNF produced.

MSC/BDNF Characterization

Non-transduced

BDNF-transduced

No differences in appearance were detected between gene-modified cells (MSC/BDNF) and unmodified MSCs

NSC/BDNF Characterization: Stable Karyotype HD All Cells BMMSC p5

pCCLc-MNDU3-BDNF-WPRE_MOI 10 50/50_confirmed_Normal 46,XX

HD and JHD Mouse Model Studies

MSC/BDNF for HD

Mouse models of Huntington's disease

We used the YAC128 and R6/2 (120) strains of mice as models of HD and Juvenile HD

The YAC128 mouse has late onset, mild symptoms, and striatal atrophy

The R6/2 (120) mouse has early onset and seizures, and very early death (approx. 90 days)

Mice were immune suppressed to permit survival of human cells

Mice were transplanted with 500,000 human MSC or MSC/BDNF in the brain

Pre-clinical Summary: YAC128 model

- Mice treated with MSC/BDNF had significantly greater exploratory behaviors in open field testing compared to controls, indicating a behavioral measure of reduced anxiety.
- Mice treated with MSC and MSC/BDNF had reduction in the degree of striatal atrophy compared to control mice.
- We have demonstrated both a behavioral and a structural improvement due to treatment in the YAC128 model.

R6/2 Neurogenesis: 2014-0825 Efficacy study

Transplantation of MSC with and without BDNF significantly increases neurogenesis activity in the subventricular zone.

Pre-clinical Summary: R6/2 (CAG 120) model

- Mice treated with MSC or MSC/BDNF have a significant increase in neurogenesis-like activity in the subventricular zone compared to controls.
- These data suggest that MSC/BDNF could work through mechanisms of stimulating endogenous neurogenesis.
- Striatal implantation of MSC/BDNF increased the mean lifespan of the R6/2 (CAG 120) mice.
- Increasing neurogenesis and striatal neuron survival is a key goal of the planned future clinical trial, HD-CELL.

Pre-clinical Summary

- Taken together our results demonstrate that MSC/BDNF reduced anxiety, slowed down or prevented striatal atrophy, and increased the lifespan when using two different transgenic mouse models of HD.
- This recovery may be due to the stimulation and maturation of endogenous neurogenesis promoted by the MSC and enhanced by BDNF.

Clinical Trials

PRE-CELL: We have enrolled 30 patients with early-stage HD. We are collecting clinical data (neurological and psychiatric exams, functional abilities, cognitive evaluation, volumetric brain MRI, and exploratory serum and CSF biomarker studies) with assessments every 6 months. We are determining the rate of change in each parameter for every subject in order to enhance safety and permit exploratory measures of clinical efficacy and biomarkers in the planned Phase 1 trial.

HD-CELL: We propose to enroll eligible PRE-CELL subjects who have completed at least one year of longitudinal assessments into HD-CELL. This will be an open-label Phase I dose-escalation trial, and all subjects to be treated will receive bilateral intrastriatal implantation of MSC/BDNF. We plan to enroll 3 dosing groups with 5-7 subjects per cohort.

PRE-CELL Study

- Prospective, longitudinal observational study
- Primary objective: To establish the rate of change in clinical, imaging and biomarker measures in subjects
- Study approved by UC Davis IRB in July 2013, with first subject enrolled in September 2013
- Bioethics substudy of subjects and care partners added 2015

ClinicalTrials.gov Identifier: NCT01937923

PRE-CELL Inclusion Criteria

- 1. Men or women age 18 and older, English speaking, able to give informed consent and comply with study procedures.
- 2. HD diagnosis confirmed with genetic testing.
- 3. Early stage HD with Total Functional Capacity (TFC) score of 9-13.
- 4. Clinically definite signs of HD.
- 5. Must have a caregiver or informant able to give feedback about the participant and willing to report observations about subject on standardized forms.
- 6. Subjects of child bearing potential must agree to adequate birth control measures.

Please see http://clinicaltrials.gov/show/NCT01937923

Recruitment and Enrollment

PRE-CELL Recruitment and Enrollment (June 2015)					
Screened	Enrolled	Excluded	Pending enrollment	Scheduled for screening	
41	31	9	1	0	
Number of subjects completing scheduled visits					
Screened	Baseline	V01 (6 mo)	V02 (12 mo)	V03 (18 mo)	
41	31	25	17	5	

PRE-CELL enrollment will end June 2015

PRE-CELL Interim Results

- Rate of change in clinical measures, including functional abilities, independence, motor exam, psychiatric symptoms and cognition
- Rate of change in MRI scan measures
- Rate of change in serum and CSF BDNF and mutant huntingtin protein levels

PRE-CELL Interim Results: estimated trajectories

Cognitive Assessments

Associate Professor of Neurology, UC Davis

Julie Stout, PhD

Professor, School of Psychological Sciences Monash University

Structural MRI Analysis

Charles DeCarli, MD Professor, Department of Neurology Director, IdEA Lab at UC Davis Co-Clinical PI

/an Fletcher Visiting Professors Baljeet Singh Mats Tullberg **Noel Smith** Mitsuhira Yoshita Oliver Martinez **DongYoung Lee** IDEA LAN **Pauline Maillard** Supported by NIH/NIA Hillblom and Dana Foundations IDeA Lab http://idealab.ucdavis.edu Imaging of Cementia and Aging

Volumetric MRI Brain Analysis

Volumetric analysis showing areas of reduced striatal volume in PRE-CELL subjects (areas in blue)

Volumetric imaging analysis showing change in brain volumes at 6 months

Location: I J K: (089,039,069) X Y Z: (086.91,058.50,067.38) Value: 32767.00

DeCarli IDeA Lab, UC Davis

ally.

MSC/BDNF for HD

PRE-CELL Biomarkers

Steven Hersch, MD, PhD Professor of Neurology Harvard Medical School

BDNF Mutant Huntingtin Protein

Ethical considerations regarding a first-in-human stem cell gene therapy trial for Huntington's disease

Kyle Fink, PhD Alexandra Duffy, DO Vicki Wheelock, MD Mark Yarborough, PhD University of California, Davis **HD-CELL:** Proposed Phase 1 safety and tolerability trial of MSC/BDNF neurosurgically implanted into striatum using techniques similar to deep brain stimulator implantation

WOC Lopez et al. Stereotactic planning software for human neurotransplantation. *Restor Neurol and Neurosci* 2014;31:579-595. 2014.

Fig. 1. MRI T1w, showing typical views obtained from the STP3 -planning workstation. Three coronal projections with tracts going to the caudate nucleus and to the putamen on the left side.

Treatment Cohorts

- Low dose MSC/BDNF: 5 x 10⁶ cells per striatum
- Medium dose MSC/BDNF: 10 x 10⁶ cells per striatum
- High dose MSC/BDNF: 20 x 10⁶ cells per striatum

HD-CELL Schedule of Activities

	Screening + Pre-op	Surgery within 30 d	V1 - 4 mo 1-2	V5 3 mo	V6 6 mo	V7 9 mo	V8 12 mo	2 15-24 mo
Informed consent	X							
Inclusion / exclusion	x	x	x	x	x	X	x	×
General exam	X		X	X	x	Х	x	X
Neuro exam	X	x	X	X	Х	Х	Х	X
UHDRS	X		X	x	x	Х	X	X
Safety labs	X	x	X	X	X	Х	X	X
Cognitive battery	X		x	x	x	Х	x	X
Mood / behavior	Х		X	X	X	X	X	X
Functional / QOL / CGI			x	x	x	x	x	x
MRI brain scan	Х	x	Х	X	X	Х	Х	X
Biomarkers	X		x	X	x	Х	x	X
Lumbar puncture			Х	X	X		X	X
Adverse events	X	X	X	X	X	X	X	X

MSC/BDNF for HD

Interventional Magnetic Resonance Imaging-Guided Cell Transplantation into the Brain with Radially Branched Deployment

Matthew T Silvestrini^{1,7}, Dali Yin¹, Alastair J Martin², Valerie G Coppes^{1,3}, Preeti Mann^{1,3}, Paul S Larson^{1,3}, Philip A Starr¹, Xianmin Zeng⁴, Nalin Gupta¹, S S Panter^{1,3}, Tejal A Desai⁵, Daniel A Lim^{1,3,6}

¹Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA; ²Department of Radiology, University of California, San Francisco, San Francisco, California, USA; ³Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA; ⁴Buck Institute for Research on Aging, Novato, California, USA; ⁵Department of Bioengineering, University of California, San Francisco, San Francisco, San Francisco, San Francisco, California, USA; ⁶Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, San Francisco, California, USA. ⁷Present address: Department of Bioengineering, University of California, USA.

a iMRI-guided RBD

b Standard stereotactic targeting of a straight cannula

Regulatory Milestones Progress

A HEALTHIER WORLD THROUGH BOLD INNOVATION

MSC/BDNF for HD

UC Davis HD Team and Collaborators

Vicki Wheelock Jan Nolta **Terry Tempkin Geralyn Annett** Kari Pollock Whitney Cary **Heather Stewart Gerhard Bauer** Kyle Fink William Gruenloh Karen Pepper Jeannine McGee **Catherine Nacey Kyle Hendrix Claus Sondergaard** Sarah Farias **Kiaresh Shahlaie Jeremy Tempkin Haley Nelson** Mark Yarborough **Charles DeCarli** Sasha Duffy

UCSF:	Phil Starr and Dan Lim
Michigan:	Gary Dunbar
Boston:	Steve Hersch
France:	Anne Catherine Bachoud-Levi
Australia:	Julie Stout
Washington:	Elizabeth Aylward
Korea:	Hyun-Suk Kim

THANK YOU! HD patient advocates, patients and families Funded by the California Institute for Regenerative Medicine