Beta Adrenergic Receptor (βAR) Signaling as a novel target for optimizing skin wound healing

Contact Information

<table>
<thead>
<tr>
<th>Roslyn Rivka Isseroff, MD</th>
<th>Kate Marusina, Ph.D., MBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor</td>
<td>Manager,</td>
</tr>
<tr>
<td>Department of Dermatology</td>
<td>Research Facilitation</td>
</tr>
<tr>
<td>UC Davis School of Medicine</td>
<td>and Industry Alliance,</td>
</tr>
<tr>
<td>TEL: (530) 752-8155</td>
<td>Clinical and Translational</td>
</tr>
<tr>
<td>EMAIL: risseroff@ucdavis.edu</td>
<td>Science Center</td>
</tr>
<tr>
<td></td>
<td>UC Davis School of Medicine</td>
</tr>
<tr>
<td></td>
<td>TEL: (916)703-9177</td>
</tr>
<tr>
<td></td>
<td>CEL: (530)979-1522</td>
</tr>
<tr>
<td></td>
<td>EMAIL: kate.marusina@ucdmc.ucdavis.edu</td>
</tr>
</tbody>
</table>

Partnering goals (summary)

- Proof of concept clinical trial for venous stasis ulcers using Timolol, an FDA approved βAR antagonist (beta-blocker).
- Development of novel therapies for skin wound healing for other chronic wounds (diabetic foot ulcers, pressure sores) by stimulation of βAR-dependent cell migration, modulation of inflammation and dermal reconstruction.

Introduction/Business Opportunity

Chronic skin ulcers (venous stasis, diabetic foot and pressure ulcers being most common) present an immense burden to patients, payers, and society. Venous stasis ulcers, which account for 80-90% of all leg ulcers, affect 0.5-1.0% of men and 1.0 to 1.5% of women with increasing incidence in people over 60. The U.S. market is projected to consist of at least 700,000 patients annually, with the cost of therapy ranging from $20K to $30K per patient. It has also been estimated that in the United States, nearly a billion dollars are spent annually treating venous ulcers. The current standard of care for venous ulcers is compression dressing and leg elevation, and adjunctive therapies such as pentoxifylline, vein surgery and skin grafting may also improve outcome. Upon rigorous examination of the clinical evidence, multiple other dressing types, including alginates, silver impregnated dressings, collagen dressings and synthetic skin substitutes, have not demonstrated significant improvement in healing. It is not understood why chronic wounds do not heal—a persistent inflammatory component is thought to play a role, as well as aberrant intracellular signaling. This area is being actively investigated.

Keratinocyte migration is a key component in wound healing – it is required for skin re-epithelialization and complete wound repair. No matter how well the dermis is repaired, without a durable epithelium, the skin cannot be considered to be “healed.” Thus, numerous laboratories have focused their efforts on improving keratinocyte migration and wound epithelialization with the ultimate goal of more rapid wound healing in vivo. We concentrated on the role of one of several classes of beta-adrenergic receptors, the beta 2 adrenergic receptor (b2AR) in this process, expressed primarily on human keratinocytes. Our work demonstrates that blocking of b2AR pathway using pharmacological antagonists (i.e. “beta-blockers”) promotes keratinocyte migration and re-epithelization in vitro, in human skin, in an ex-vivo skin wound model, and in vivo in animal preclinical studies.
Based on our preclinical data, we propose a proof-of-concept clinical study on patients with non-healing venous ulcers to determine the safety and efficacy of a currently available (and FDA-approved) beta blocker, Timolol, for improving ulcer healing.

Core Technology

The b2 AR is a G-protein coupled receptor. B2AR activation results in signaling through different cellular pathways depending on the cell type. Activation of b2AR on keratinocytes affects several cAMP-dependent and -independent pathways that modulate the process of migration. Polymorphisms in b2AR may be also important in modifying the pharmacologic response to bAR-active drugs.

Our previous work demonstrated that activation b2AR on keratinocytes using a receptor agonist (i.e. isoproterenol, approved for use in bronchospasm, cardiac arrest or heart block) significantly inhibits their migration, and affects the rate of wound healing *in vitro* and *in vivo*. Catecholamines, such as epinephrine and norepinephrine, are endogenously generated agonists, and these are also generated by the wound epithelium. Therefore it is possible that one contributing pathogenic mechanism contributing to non-healing skin wounds is the chronic activation of b2AR by endogenously generated catecholamines.

Isoproterenol, inhibited migration of cultured human keratinocytes isolated from neonatal foreskins. This inhibition was dose-dependent and was reversed by the addition of timolol, a beta blocker (FDA approved, and currently in use primarily as an anti-glaucoma drug). The results were confirmed by the “scratch wound assay”, where a plate of confluent keratinocytes are scratched to make a wound, and the migration of cells are monitored by videomicroscopy and imaging. Similarly, addition of isoproterenol inhibited healing of human skin cultured *ex vivo*, and healing is improved by adding the beta blocker. Finally, we have confirmed this in two *in vivo* animal studies- in an acute excisional wound model and a more chronic full thickness burn wound model. In both *in vivo* models, the treatment of the wound, with either topical or systemic beta blockers, improves healing, and results in more rapid wound epithelialization.

We believe that our pre-clinical data is exhaustive enough to warrant a POC trial with timolol. However, additional pre-clinical tests could be done using a chronic wound model which is currently being implemented in collaboration with Dr. Kevin Grayson, DVM, PhD, Director,
Clinical Investigation Facility, David Grant Medical Center, Travis Air Force. The proposed model would more closely resemble the non healing wounds of venous stasis. An excision, made on the back of the animal's ear down to cartilage, is then further impaired by tying its feeder arteries. This chronic wound model that is used widely in the preclinical testing of drugs to enhance healing.

Proposed Clinical trial

We propose a proof-of-concept clinical trial using an FDA approved and clinically available topical beta blocker (timolol) for the enhancement of wound healing. The synopsis of this protocol is attached. It has already been approved by our local VA Northern California Health Systems) IRB. Patients would be recruited from the VA Wound Healing Clinic, of which Dr. Isseroff is the director.

Clinical trial experience

Dr. Isseroff has been the site Principal Investigator of over 10 sponsored clinical trials. Most recently she has enrolled over 25 patients in a one-year period in a venous ulcer, industry sponsored trial. This patient population is not the target of any other current ongoing trial. Dr. Isseroff is dually appointed. She is full time faculty at UCD department of dermatology, and in addition holds a 50% appointment at the VA, where she is a staff physician, Director of the Wound Clinic, and a VA Merit Award funded basic researcher in wound healing.

Patient Profile

The VA multispecialty Wound Clinic (housed within the Dermatology Section) sees most of the venous, diabetic and pressure ulcer patients enrolled in the VA Medical Center Northern California Health System. That translates to more than 50 patients with the diagnosis of venous ulcers seen in the clinic each year. Of these, we anticipate we can enroll about 2 patients per month, and the required 40 patients in under 2 years.

Dermatology Department

Seven of the Department faculty MDs are now actively involved in clinical trials. There is a department subsection for Clinical Research, staffed by two senior and three junior clinical research coordinators, and two clinical trial nurses. These departmental staff provide support for all ongoing trials. In addition, onsite at the VA Wound clinic, there is a clinical research coordinator and a research nurse. A table listing some of the trials carried out by in the past 5 years in our department is attached, along with a brief synopsis of faculty interests. The sites (UCDMC Dermatology Department, and VA Dermatology Section) have not been audited by FDA.

Intellectual Property

“Beta adrenergic Receptor Agonists and antagonists and modulation of wound healing”, WO 06/108176 published Dec 14, 2006

“In vitro wound healing assay and device” WO 2006/010161 filed July 2004

Selected Publications

Sivamani RK, Garcia MS, Isseroff RR. Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci. 2007 May 1;12:2849-68.

